
TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5

A Software-Only Scheme for Managing Heap Data on Limited Local
Memory(LLM) Multicore Processors

KE BAI and AVIRAL SHRIVASTAVA, Arizona State University

This article presents a scheme for managing heap data in the local memory present in each core of a
limited local memory (LLM) multicore architecture. Although managing heap data semi-automatically with
software cache is feasible, it may require modifications of other thread codes. Crossthread modifications are
very difficult to code and debug, and will become more complex and challenging as we increase the number
of cores. In this article, we propose an intuitive programming interface, which is an automatic and scalable
scheme for heap data management. Besides, for embedded applications, where the maximum heap size can
be profiled, we propose several optimizations on our heap management to significantly decrease the library
overheads. Our experiments on several benchmarks from MiBench executing on the Sony Playstation 3 show
that our scheme is natural to use, and if we know the maximum size of heap data, our optimizations can
improve application performance by an average of 14%.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Code generation, Com-
pilers, Optimization

General Terms: Algorithm, Design, Experimentation, Performance

Additional Key Words and Phrases: Heap data, local memory, scratch pad memory, embedded systems,
multicore processor, IBM Cell BE, MPI

ACM Reference Format:
Bai, K. and Shrivastava, A. 2013. A software-only scheme for managing heap data on limited local memory
(LLM) multicore processors. ACM Trans. Embedd. Comput. Syst. 13, 1, Article 5 (August 2013), 18 pages.
DOI: http://dx.doi.org/10.1145/2501626.2501632

1. INTRODUCTION

Scaling the memory architecture is one of the toughest and the most significant issue
as we evolute from multicore (few cores) to many-core (thousands of cores). Meanwhile,
providing the illusion of a singe unified memory space in hardware is becoming expen-
sive for two main reasons: (i) automatically managing the memory in hardware, that
is, by caches, becomes prohibitive, since it has higher power and performance over-
heads. Caches have already consumed about half of the processor energy on single-core
processors [Banakar et al. 2002] and are expected to consume more as the number of
cores increase. (ii) Cache protocols are not well scalable to many cores [Eichenberger
et al. 2006]. As a result, limited local memory (LLM) multicore architecture with a
small local memory on each core is coming up as a promising scalable memory ar-
chitecture. Modern and futuristic processors, especially in the embedded domain, are

This research was partially funded by grants from National Science Foundation CCF-0916652, IIP-0856090,
and NSF I/UCRC for Embedded Systems.
Authors’ addresses: K. Bai and A. Shrivastava, Compiler and Microarchitecture Laboratory, Arizona State
University, Tempe, AZ 85281; corresponding author’s email: ke.bai@asu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c� 2013 ACM 1539-9087/2013/08-ART5 $15.00

DOI: http://dx.doi.org/10.1145/2501626.2501632

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5:2 K. Bai and A. Shrivastava

being designed in LLM multicore architectures. One such example is the IBM Cell
BE [Flachs et al. 2006].

In an LLM multicore processor, each core can only directly access its local memory,
and programmers are responsible for manually adding DMA commands for data trans-
fers between the global memory and the local memory. For example, each Synergistic
Processing Element (SPE) on the IBM Cell BE can only access its local memory, and this
local memory is shared by all code and data of the thread mapped to the core. When
developing applications on LLM multicore architectures, there are always two chal-
lenges. The first is that programmers must parallelize the given application at several
levels, for example, thread level or data level. The second is that each thread on each
core should be executed efficiently. When a thread can not be mapped to a core, pro-
grammers must change the way the application is parallelized. This can be extremely
complex, because often applications have some natural parallelism themselves, and
finding out some other ways to parallelize them can be formidable. Therefore, we pri-
marily cope with the second challenge of executing (and efficiently executing) a thread
of application on a core.

If all the code and data of an application can fit into the local memory, extreme
efficiency is achieved—this is the promise of LLM multicore architectures. However, if
they can not completely fit into the local memory, DMA commands must be inserted
to bring the required data to the local memory before it is used and move some not-
so-urgently-needed data back to the global memory. With limited memory resource
in the local memory of LLM architectures, all code and data of a thread must be
managed. However, managing heap data is especially important. First, it is dynamic
in nature, and the size is always data dependent and can be unbounded. Second, in
most systems, heap and stack grow towards each other and could easily overwrite each
other. The gentle failure is that the application will crash or go to an infinite loop.
The severe failure is that the program gives a wrong result without the awareness
of the programmer. In fact, the Cell Programmer’s Guide suggests to “avoid using
heap variables”. We believe this will extremely restrict a programmer’s productivity
and creativity. Consequently, we need a scheme to efficiently manage heap data in a
constant and small amount of space in the local memory.

One way to semi-automatically manage heap data in the local memory on each core
of an LLM multicore processor is through the use of the software cache [Angiolini et al.
2004]. Software cache is essentially software implemented in some data structures.
Global data can take advantage of software cache better than other data types, since
it is declared and allocated once. Heap data, which is dynamically allocated, can not
use software cache directly. In fact, managing heap data of an application thread
with software cache requires several non-intuitive and error-prone modifications in
the application code. It requires not only the modification of the execution thread, but
also several changes of the main thread. Namely, the user must create a new thread
on the main core that listens to memory requests from the execution core. As the
number of cores increases, this solution becomes more complicated to be implemented
and debugged.

This article proposes a scheme for hiding the programming complexity in a library
with simple programming interface. We modify the GCC compiler for IBM Cell BE to
automate insertions of library functions, compile benchmarks from MiBench [Guthaus
et al. 2001] and others using it, and then measure the runtime on the Sony Play
Station 3. Our experiments show that our heap management scheme, while being
transparent to programmers, performs on par with a software cache implementation.
When the maximum heap size of the application can be known, our optimizations can
improve application speeds by an average of 14%.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

A Software-Only Scheme for Managing Heap Data on LLM 5:3

Fig. 1. The IBM Cell BE is a good example of limited local memory (LLM) architectures. There are eight
synergistic processing elements, or SPEs. Each SPE can access only a small local memory, and all data
transfers between the local memory and the global memory take place through explicit DMA calls.

2. BACKGROUND

2.1. Limited Local Memory Architecture

The IBM Cell Broadband Engine [Flachs et al. 2006] is a very good example of limited
local memory (LLM) multicore architectures. As shown in Figure 1, it is a nine-core
architecture, with one main core (the power processing element, or PPE, in the IBM
Cell BE) and eight distributed execution cores (the synergistic processing elements, or
SPEs, in the IBM Cell BE). The main core in the Cell BE is a two-way simultaneous
multithreaded power 5 core, while each of the execution cores works on only one thread
at a time in a non-preemptive fashion. Only the main core has an operating system, and
it has direct access to the global memory through a coherent L2 cache. Each execution
core has a 256 KB local memory and can not directly access the global memory and
other local memories. Data communications between the local memory and the global
memory should be explicitly managed in the software through the direct memory access
(DMA) engine.

2.2. Thread-Based Programming Paradigm

Programming on an LLM multicore architecture is based on a Message Passing In-
terface (MPI) style thread model. It requires programmers to have a main thread.
This main master thread is responsible for creating, distributing data and tasks, and
even collecting results from execution threads. The main thread runs on the main core,
while the execution threads are scheduled on execution cores. A very simple application
in this multicore programming paradigm is illustrated in Figure 2. In the pseudocode,
the main thread, executing on the main core, initiates several execution threads on
the execution cores. In the execution thread, N number of ITEM data structures are
initialized and accessed. ITEM data structures contain two fields, id (int) and price
(float) for each item.

3. MOTIVATION

Generally, the local memory on the execution core is conceptually divided into four
segments by the compiler: text region, global data region, heap data region, and stack
data region. The text region is where the compiled code of the program itself resides.
Function frames reside in the stack region, starting from the top of the memory and
growing downwards, while heap variables (defined through malloc) are allocated in
the heap region, starting from the top of code region and growing upwards. The four
segments share the limited memory resource of local memory. Because the local memory

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5:4 K. Bai and A. Shrivastava

main () {
for (speID=0;speID<NUMSPEs; speID++){
init SPEs (speID) ;

}
}

(a) PPE code

typedef struct {
int id ;
f loat price ;

} ITEM;

main () {
for (i =0; i<N; i ++){
item [i] = malloc (sizeof (ITEM)) ;
item [i] . id = i ;
pr in t f (”%d\n” , item [i] . id) ;

}
}

(b) SPE code

Fig. 2. Outline of a threaded program on the Cell BE: (a) PPE creates a thread on each SPE; (b) on each
SPE, some ITEM structures are allocated and accessed.

lacks any hardware protection, heap data can easily overflow into the stack region and
corrupt the program state.

In Figure 2, for small N, the program will execute correctly, but large values of N
can cause catastrophic failures, for example, the application crashes, the execution core
goes into an infinite loop. However, the worst situation is that the output is just slightly
incorrect. One way to avoid these problems is to avoid using heap variables; however, we
believe that this is very limiting on both the creativity and the productivity of program-
mers. What is needed is a scheme that limited local memory multicore programmers
can use to efficiently and automatically manage heap data of the application.

4. RELATED WORK

Local memory in each core of an LLM multicore architecture is a raw memory under
software control. They are very similar to the Scratch Pad Memories (SPMs) popular
in embedded systems. Banakar et al. [2002] proposed the use of raw memories in
embedded systems when they noticed that caches consume a very significant portion of
the power budget of even an embedded processor, like the Intel StrongARM [Montanaro
et al. 1997]. They demonstrated that for the same memory area, SPMs consume 40%
less energy and 34% less die area. However, the absence of memory management logic
in the hardware shifts the burden of managing data to programmers.

Techniques have been proposed to manage code [Steinke et al. 2002a, 2002b;
Angiolini et al. 2004; Verma et al. 2004, 2005; Nguyen et al. 2005; Egger et al. 2006a,
2006b; Udayakumaran et al. 2006; Janapsatya et al. 2006; Verma and Marwedel 2006],
global data [Kandemir et al. 2001, 2002; Steinke et al. 2002b; Avissar et al. 2002; Verma
et al. 2005; Li et al. 2005; Udayakumaran et al. 2006; Verma and Marwedel 2006] and
stack data [Avissar et al. 2002; Francesco et al. 2004; Nguyen et al. 2005; Li et al.
2005; Udayakumaran et al. 2006] on the SPM, but little work has been done towards
managing heap data [Francesco et al. 2004; Dominguez et al. 2005; McIlroy et al. 2008],
not even to techniques for LLM multicore architectures.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5:8 K. Bai and A. Shrivastava

/�PPU heap region � /
int ppe heap [MAX] ;

main () {
for (speID=0;speID<NUMSPEs; speID

++){
init SPEs (speID) ;

}
}

(a) PPE code

main () {
for (i =0; i<N; i ++){
item [i] = malloc (sizeof (Item)) ;

item [i] = p2s (item [i]) ;
item [i] . id = i ;
pr in t f (”%d\n” , item [i] . id) ;
item [i] = s2p (item [i]) ;

}
}

(b) SPE code

Fig. 6. Using our approach to manage heap data. (a) We redefine malloc and free on the SPE to automatically
interact with the PPE. (b) Our modified GCC compiler automatically inserts a call to p2s function before
and a call to s2p function after accessing each heap variable.

6.2. Application Programming Interface (API)

The fundamental challenge in limited local memory (LLM) multicore architectures
is that every variable can have two addresses, a global address and a local address,
depending on where the variable is located. The software cache hides local addresses to
programmers. It only exposes global addresses of variables, and users must use them
to access variables through the software cache. The interface of the software cache
simulates the functionalities of the cache in the cache-based architectures. However, it
requires the address translation every time when the variable is accessed, and therefore
incurs high overhead. To solve this problem, our heap data management approach
exposes both addresses of variables to programmers. With the local address, users can
directly access the variable and do not need to perform the address translation every
time. If a required variable is not in the local memory, the library function p2s(global
address ga) brings it from the global address ga to the local memory and returns the
local address la of the variable. The counterpart functionality is encapsulated in the
function s2p(local address la). Besides introducing two newly implemented functions,
we also re-implement two existing functions, malloc and free. If there is enough memory
space in the heap region of the local memory, the malloc function can directly return
a pointer. Otherwise, the function will first evict the oldest heap variable(s) to the
global memory to make sufficient space for the coming heap variable, and then return
a pointer. One important point to note here is that even if the malloc function may
allocate space from the local memory, it still returns the global memory address of the
allocated heap variable each time. This is because different heap variables can have the
same local memory address, but definitely have unique global memory addresses. Thus,
we should always access heap variables through global addresses. The free function also
uses the global address of the variable.

6.3. Implementation Details

We expose both global addresses and local addresses to programmers. Therefore, our
library keeps a mapping between these two addresses in a data structure called the
heap management table.

6.3.1. Bookkeeping Data Structure – Heap Management Table. Each entry of the manage-
ment table consists of the following information (it is not the real data structure for
each entry).

For each heap variable, its size should be kept in chunkSize. The size can be one heap
object or any other sizes, depending on the granularity. For two different addresses,
we have speAddress and ppeAddress, accordingly. One other important information

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

A Software-Only Scheme for Managing Heap Data on LLM 5:9

HMDSEntry{
chunkSize , /� s ize of heap ob jec t � /
speAddress , /� l o c a l memory address � /
ppeAddress , /� global memory address � /
isFree , /� indicates whether this heap was freed � /
val id , /� indicates whether the entry i s val id � /
inSPM , /� indicates locat ion of heap variable � /
timeStamp , /� f o r LRU replacement po l i cy � /

}

is the location of the heap variable, and therefore inSPM is used. If the heap data is in
the local memory, it is set to 1; otherwise, it is 0. Again, heap data is dynamic in nature
and it can be allocated and deallocated at any time. This is the reason why we introduce
isFree. The 1 indicates this heap variable is freed. When the space in the local memory

for heap is not sufficient, some old heap objects should be evicted to the global memory.
We implement LRU replacement policy for our heap management, since the access
pattern of the heap data is complex in its analysis. timeStamp shows when this heap
variable starts to be located in the local memory. Finally, because the heap management
table might be accessed frequently, it is beneficial to keep more valid entries at a given
table size in the local memory. It can reduce data transfers between the global memory
and the local memory. Two ways can be used to achieve this objective. The first option
is to reuse the table entries. This can be achieved by the flag valid. The 0 of the flag
means this entry can be reused for other heap objects later. The second choice is to
keep every entry of management table as small as possible. One thing that should be
emphasized is that the fields previously shown are not the real elements in each entry
of our heap management table. We only use 18 bits for speAddress, 1 bit for valid,
and 1 bit for inSPM. In total, each entry occupies 16 bytes.

6.3.2. Interaction between Functions and Heap Management Table. The malloc function adds
a new entry for every allocated heap object to the heap management table (HMT).
Reversely, free may result in the removal of an entry in the table. Both the function
p2s and the function s2p access HMT when they are called every time. p2s takes in

the global address ga, and then uses it to look up the table to find the right entry E
by checking ga with all global addresses in HMT until it is found. From the element
inSPM in E, we know where the heap data is locating. If it is in the local memory,

the function just returns speAddress in E. Otherwise, p2s looks up the table again
to find the oldest heap data h in the local memory and evicts it to its global address
ga′. After the eviction and the updating of inSPM for h, the right data located in ga
will be fetched to the local address la of h, and finally la is returned and timeStamp
is updated. Contrarily, the process in s2p is simpler. It only maps the local address la
back to its corresponding global address ga. It is done by checking the HMT until the
local address in that entry matches the la and the inSPM indicates the heap data is
in the local memory.

6.4. Global Memory Management

In order to support (almost) unlimited heap memory, we have to manage heap data
and the heap management table in the global memory dynamically. This essentially
requires a separate memory management thread running on the main core. Our im-
plementation is similar to the one described in Section 5, however, this separate thread
is a part of the library in our implementation, and the user does not need to explicitly
write it. In Figure 7, we can see the functionality of our global memory management
thread. When the execution thread wants to put some old heap data to the global

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5:10 K. Bai and A. Shrivastava

Fig. 7. Global memory management thread on PPE.

memory, it first checks whether there is enough space there. If there is enough space
in the global memory, it can directly and efficiently leverage DMA to transfer the data.
Otherwise, there must be a memory request from the execution thread. The request
is achieved through mailbox facility provided by the IBM Cell SDK. Once the memory
management thread receives the size of space, it allocates the memory in the main core
and returns the start and end addresses of the allocated space to the execution core. At
this point, the DMA can be used to evict contents from execution core to main core. As
for free() function, the execution core sends a signal and the memory size to the main
core, and the global memory management thread will free that size of memory.

With global memory management thread, we solve the problem of “how to send” and
“where to send”. However, another consideration is “how much to send”. In our heap
management implementation, we introduce the concept of granularity. The unit of data
transfer between the local memory and the global memory is called the granularity of
management. Heap data can be managed at various granularities, right from word-
level to the whole heap space allocated in the local memory. Again, we can look at the
sample code in Figure 2. The program accesses one field (item.id) of the data structure
after initialization. When the program accesses any part of a allocated data structure,
if only the exact field (item.id) is brought into the local memory, the heap management
is done at word level of granularity. If the whole data structure is brought into the local
memory, the heap management is done at programmer-defined granularity. How to
define the granularity depends on the structure of the application. If the allocated data
structures are very large and only a small part of them are used each time, we believe
that a finer granularity of heap management is beneficial. When the allocated objects
are very small, heap management can perform at a coarser granularity by grouping
the allocated objects into a block, and if a part of any of them is accessed, a whole block
of them are brought into the local memory. One important advantage of our software
implemented heap management is that it can be tuned to the application demands,
rather than block size being fixed for a given processor implementation in traditional
cache architectures.

6.5. Local Heap Management

In our heap management, the functions p2s and s2p look up the management table
at every function call. Since this looking up overhead can be large, one is tempted
to maintain the whole table in the local memory. However, the size of the table may
also grow arbitrarily large if the number of heap objects is large. Therefore, heap
management approach should support the requirement of maintaining a portion of
management table in the local memory. The space we defined in the local memory for

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

A Software-Only Scheme for Managing Heap Data on LLM 5:11

heap S is divided into a constant space H for heap data, and a constant space T for
heap management table, such that S = H+T . All the sizes, S, H, and T can be fixed at
compile time. Every time when malloc wants to add a new entry, it checks if there is still
place. If yes, it can just write the new entry; otherwise it can only write the new entry
after making its space by evicting some of the older entries to the global memory. The
global memory management thread described in the previous section provides space in
the global memory for older entries. Besides, we need to consider the granularity when
we evict the entries. The heap table management can also be performed at several
granularities, from a single entry to the entire table size we set at the compile time. We
leave the exploration of the effect of the granularity of table management as a future
concern. In this work, we manage the heap management table at the whole table size
granularity. Namely, we evict the whole table, and bring a full table back into the local
memory, when needed.

7. OPTIMIZATION FOR EMBEDDED SYSTEMS

In order to support (almost) unlimited heap data, we implement a thread in the main
core to dynamically allocate memory for heap data and the heap management table.
Fundamentally this requires some communications between execution cores and the
main core, which can interpret messages from local threads. In the Cell BE, we can
achieve this through another thread on the main processor and a mailbox-based com-
munication between execution cores and the main core. This communication overhead
is in addition to the actual heap data transfers. Clearly this has high overhead and will
become more expensive as the number of cores increases.

In embedded software, where the upper bound of the heap size can be profiled, we
can do some optimizations to minimize the overhead. By profiling, we can get and keep
this maximum size. Then we can define static data structures, for example, arrays, to
contiguously accommodate heap data and heap management table entries from local
cores. When heap data is needed, we can resolve the global address in the execution
core so that a DMA can be directly used to transfer the data from the global memory.
This completely eliminates the need for the extra thread in the main core, and therefore
avoids all the performance overheads associated with the communication. In addition,
if possible, and especially because the heap management table entries may be much
smaller than heap data, the whole heap management table may be housed in the local
memory, resulting in additional performance optimization.

8. EXPERIMENTS

8.1. Experimental Setup

We conduct our experiments on the IBM Cell BE in Sony Playstation 3, which runs a
Linux Fedora 91 and gives us access to six of eight SPEs. We implement our scheme
on the single-threaded benchmarks from the Mibench suite [Guthaus et al. 2001] and
self-implement other applications which use heap variables. We modify those single-
threaded benchmarks to multithreaded applications, in which the PPE thread performs
all the input/output and the SPE threads perform all computing tasks. We evaluate
the effectiveness of our heap management technique and optimization by comparing
the runtime of (i) benchmarks without any heap management, (ii) benchmarks with
heap management to support arbitrary heap data size, and (iii) benchmarks with heap
management optimizations. We use mftb() and spu decrementer() for measuring the
runtime of PPE and SPE individually. The details of our benchmarks are listed in
Table I. dijkstra, fft, fft inv, and stringsearch are from the Mibench suite [Guthaus

1http://fedoraproject.org/wiki/releases/9.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

TECS1301-05 ACM-TRANSACTION August 6, 2013 16:18

5:12 K. Bai and A. Shrivastava

Table I. Several Benchmarks from MiBench and Elsewhere that Use Heap Variables

Benchmarks Source Description Heap Size (bytes)

Dijkstra Mibench find the shortest path 5,040
fft Mibench fft algorithm 16,416

fft inv Mibench fft inv algorithm 16,416
stringsearch Mibench search strings 4,096

DFS self-implemented depth first search algorithm 16,000
MST self-implemented minimum spanning tree algorithm 336

rbTree self-implemented red black tree data structure 2,476

Note: The table shows the maximum heap data each application needs.

et al. 2001], while DFS, MST, and red black tree are some other algorithms that are
very likely to be used in the application domain developed for the Cell BE. Only the
maximum heap size demands for all the benchmarks are noted in Table I, the size
of other data is skipped. Although the heap data can fit in the 256 KB of the local
memory, the whole application can not be accommodated in it. Most of our experiments
are conducted on the configuration of one PPE and only one SPE. The scalability of
our technique is explored in our last experiment where multiple identical threads are
created on various number of cores.

8.2. Unrestricted Heap Size

To demonstrate the value of our heap management, we execute one benchmark, rbTree,
with and without heap management. It is a binary search benchmark. Each node in the
tree data structure is 24 bytes large and is dynamically allocated. In the benchmark,
241 KB can be shared by the heap data and stack data, and the remaining 15 KB are
occupied by the code and global data. We can allocate only n0 = 6,800 nodes (almost
160 KB in heap) without any heap management, exceeding which the program crashes.
We run the benchmark using our heap management scheme with nodes from 1 to
65,536, which is almost ten times larger than that which can be executed without heap
management. We initially allocate 150 KB for heap data in the local memory. Therefore,
no heap data DMA happens between the global memory and the local memory until
the 150 KB space is full. Furthermore, our heap management table consumes 4 KB,
which means we have 256 entries in our table. We choose these parameters for the fair
comparison of time with and without heap management scheme.

The first observation from Figure 8 is that our technique seems to support any heap
size of the application. We dynamically manage both the heap management table and
the memory allocation in the global memory. The runtime increases as the number
of nodes in rbTree becomes larger, for the reason that DMA needs to be performed
in our heap management scheme for heap data and heap management table. It is
also the reason why there is a leap after allocating more than 6,800 nodes. However,
our technique enables the execution of the application for any program parameters,
without any further modifications.

8.3. Impact of Heap Management Parameters

With the heap management, the performance of applications are most affected by two
parameters: (i) the amount of memory in the execution core that is used for storing
heap objects and the heap management table; (ii) the granularity that we choose for
heap data management.

The total space S we defined in the local memory for heap can be partitioned as
S = H + T . Assume the number of heap chunks that can be located in the fixed heap
region is nH and the size of each heap chunk is sH , then the total space for heap data

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 1, Article 5, Publication date: August 2013.

