
CuMAPz: Analyzing the Efficiency
of Memory Access Pattern in CUDA

Yooseong Kim and Aviral Shrivastava
Compiler and Microarchitecture Laboratory

Arizona State University, Tempe 85281, USA
{yooseong.kim, aviral.shrivastava}@asu.edu

Abstract
Even though the entry barrier of writing a GPGPU program is low-
ered with the help of many high-level programming models, such
as NVIDIA CUDA, it is still very difficult to optimize a program so
as to fully utilize the given architecture’s performance. The burden
of GPGPGU programmers is increasingly growing as they have to
consider many parameters, especially on memory access pattern,
and even a small change of those parameters can lead to a dras-
tic performance change, which is not obvious, or often counter-
intuitive, before careful analysis. In this paper, we focus on op-
timizing a CUDA program using shared memory. We present a
tool that analyzes the efficiency of given parameters on memory
access pattern. Given a set of parameters, the tool analyzes data
reuse, global memory access coalescing, shared memory bank con-
flict, partition camping, and branch path divergence. The output of
the tool is profitability, a comprehensive performance metric intro-
duced in this paper. Profitability can be used to compare the effi-
ciencies of different sets of parameters, without even writing a pro-
gram. Experimental results show that profitability can accurately
predict the change of the performance of a program as we change
the memory access pattern related parameters.

Categories and Subject Descriptors D.1.3 [Programming Tech-
nique]: Concurrent Programming; C.1.4 [Processor Architecture]:
Modeling techniques

General Terms Performance, Design, Experimentation

Keywords GPGPU, CUDA, Memory access pattern, Performance
estimation, Analytical Model

1. Introduction
The computational power of modern Graphics Processing Units
(GPUs) has been rapidly increasing, and now reached teraFLOPs
scale. Given the tremendous computing power from the cheap,
easily-accessible device, researchers began to be interested in uti-
lizing GPUs for applications other than graphics. This trend has
evolved into the new computing paradigm, GPGPU (General Pur-
pose computation on GPUs), which is to accelerate programs by
co-processing on the CPU and GPU.

[Copyright notice will appear here once ’preprint’ option is removed.]

As high-performance parallel architectures, GPGPUs are giving
us a promising view of affordable supercomputing on desktop sys-
tems. Traditionally GPGPU programming required a high level of
expertise and proficiency. Being a modestly extended version of C,
NVIDA CUDA programming model [7] has successfully lowered
the entry barrier for programmers to write GPGPU codes. How-
ever, to develop high-performance applications that fully utilize the
given hardware’s potential, or to optimize an existing program, is
still very complicated and tricky. It is mainly due to a large num-
ber of optimization principles [9, 17] that come from architectural
and programming models’ details, and complex memory hierarchy
of architecture. Programmers need to consider all of performance-
critical factors carefully since a slight change in source code can
result in much slower, or faster, runtime. Furthermore, program-
mers have to decide numbers of parameters regarding memory ac-
cess pattern, such as loop structure, array index requested by each
thread, data to be fetched in shared memory, the shared memory
array size, etc. To try all of the options is inefficient and often in-
feasible because writing a different version of a kernel is still com-
plicated work and space of optimization to be explored is too large
[16]. We cannot impose programmers this heavy burden of consid-
ering all of detail factors at the same time while writing a massively
parallel program.

In this paper, we focus on the difficulties in optimizing an ex-
isting CUDA program using shared memory. Shared memory is an
explicitly-managed memory of a small size that each multiproces-
sor has on-chip. Using shared memory is especially important in
optimizing CUDA programs, because the global memory in CUDA
architecture is not cached and also bandwidth-constrained, while
shared memory is as fast as registers when there is no bank conflict.
Also, shared memory is the only fast memory on CUDA where both
read and write are enabled. Though cached and fast, other memo-
ries in memory hierarchy, texture memory and constant memory,
are read-only, making their area of use more limited than shared
memory. Even in this small subset of the problem, there are many
factors, especially on memory access patterns, that need to be con-
sidered very carefully. For example, traditional data reuse analysis
for explicitly managed scratchpads is not enough for shared mem-
ory in GPUs. Slow global memory can often become a bottleneck
when there is uncoalesced accesses or partition camping [9], lead-
ing to counter-intuitive results. Shared memory access pattern can
cause severe branch divergence which also has a huge impact on
performance. Shared memory bank conflicts can’t be ignored ei-
ther. A program sometimes becomes even slower after introduc-
ing shared memory buffers due to all the above mentioned factors.
One cannot accurately analyze the performance of programs with-
out considering all the factors at the same time.

To address this problem, we present a tool, named CUDA Mem-
ory Access Pattern analyZer (CuMAPz), which helps programmers

1 2010/8/1

choose the memory access related parameters without even writ-
ing the kernels. Given a set of parameters regarding memory ac-
cess pattern as input, CuMAPz comprehensively analyzes the ef-
ficiency of the memory access pattern of the program. Then, it
outputs profitability, a metric introduced in this paper, which en-
ables programmers to compare the relative efficiency of one set of
parameters over others. Profitability is obtained by combing the re-
sult of these analyses: data reuse; global memory access coalescing;
shared memory bank conflict; partition camping; and branch diver-
gence. By checking those well-known architectural and program-
ming model’s features that have significant impact on performance,
all at once, our approach finds any possible performance-limiting
factor in memory access pattern that will very-possibly slow down
the execution of a program and helps developers make a decision
on designing a program.

The rest of this paper is organized as follows. In Section 2,
we briefly introduce NVIDIA CUDA programming model and
memory hierarchy as background. Then, we present motivational
examples to show the importance of memory access parameters.
We discuss related work in Section 4. Overview of our approach
and detailed explanation are presented in Section 5. In Section 6,
experimental results are presented to validate the effectiveness of
our approach. Then, we discuss the limitation of our approach in
Section 7 and then conclude in Section 8.

2. Backgroud
NVIDIA Compute Unified Device Architecture (CUDA) and its
programming mode have evolved over generations. In this paper,
we focus on the NVIDIA GT200 architecture, which has compute
capability version [7] of 1.3. This does not harm the generality of
our work, since the same or similar approach as ours can be applied
to different generations.

2.1 CUDA Programming Model
CUDA programming model is basically an extended version of C
designed to help programmers write kernels relatively easily with
an abstraction of hardware. In CUDA programming model, serial
code executes on CPU while parallel code executes on GPU. Code
running on GPU is written as functions, called kernels. CPU code
launches one kernel at a time for its execution on GPU and transfers
data for input and output to and from GPU.

CUDA architecture is massively parallel in that a kernel is
executed by thousands of threads. In NVIDIA GT200 architecture,
there is a grid of streaming multiprocessors (SMs), and each SM
has eight scalar processors (SPs). The number of SMs in NVIDIA
Tesla C1060 [8] is 30, which makes the number of cores on device
be 240 in total. Each SM can have up to 1024 threads in-flight,
unless other conditions are set. Threads are grouped into thread
blocks. Each thread has its own thread id to represent the relative
location in a block, and thread blocks also have ids for themselves.
Combining the block id and the thread id, each thread is assigned a
unique id.

Each thread block is assigned to SM to be executed. Thus, the
basic unit of scheduling in SMs is a thread block. When a kernel
is launched, the order in which threads blocks are assigned to
SMs is sequential so that adjacent blocks are executed on adjacent
SMs. However, it becomes unpredictable after the first round of
schedule since the order in which thread blocks finish the execution
cannot be determined [9]. On the other hand, the actual execution
of threads on SPs is done in groups of 32 threads, called warps.
All threads in thread blocks assigned to one SM are grouped into
warps, and thread ids in a warp are consecutive. SPs execute one
warp at a time, and the execution of a warp is in SIMD manner, so
threads in the same warp are executed in lock-step, which means
all SPs in one SM execute the same instruction at a time.

1 i n t row = bIdx . y∗bDim . y+ t I d x . y ;
2 i n t c o l = bIdx . x∗bDim . x+ t I d x . x ;
3
4 i f (c o l >= MAX−2)
5 re turn ;
6
7 o u t [row∗MAX+ c o l] = i n [row∗MAX+ c o l] ∗
8 i n [row∗MAX+ c o l +1] ∗
9 i n [row∗MAX+ c o l + 2] ;

Figure 1. A simple CUDA program

2.2 Global Memory and Shared Memory
In CUDA-enabled GPU devices, there is an off-chip DRAM, called
global memory1. CPU code can only transfer data to this off-chip
memory, so all data reside in global memory unless specified other-
wise. Since global memory is not cached, the latency of accessing
global memory is hundreds of cycles, making it the slowest mem-
ory on device. However, this latency can often be hidden with the
help of having a large number of threads in-flight and pipelining.
Thus, other warps with independent operations can be executed in-
stead of just waiting for the IO operation to be done in a warp.
What is more crucial for performance is the bandwidth utilization.
Even though GPUs have broad bus width (512-bit in NVIDIA Tesla
C1060), the massive parallelism easily saturates the given band-
width. This often becomes the performance bottleneck of CUDA
programs. We discuss this in detail in Section 5.

Shared memory is on-chip memory whose latency is as fast as
registers’. It is an explicitly managed memory which is often used
as a local buffer for fast retrieval of data. Since shared memory
is on-chip and only accessed by threads running on the chip, the
bandwidth hardly becomes a performance limiting factor. However,
shared memory bank conflict can slow down a program. We discuss
this in detail later in Section 5. Even though shared memory is fast,
since it is only shared within one block, and its size is quite limited
(16KB in compute capabilities of 1.x), the structure of a program
and memory access pattern are very important to fully utilize the
shared memory.

3. Motivating Example
In this section, we start from a very simple CUDA program and try
to optimize its performance using shared memory. We show that
the optimization of CUDA programs cannot be done intuitively or
by hand.

Figure 1 shows a simple CUDA kernel which is not using shared
memory. The CUDA built-in variables blockIdx, blockDim, and
threadIdx are abbreviated and shown as bIdx, bDim, and tIdx,
respectively. There are three references for array in[] which is two
dimensional array with size MAX*MAX. The if condition at line 4
is given to avoid accessing over the array boundary by the reference
row∗MAX+col+2. Array element type is float for both in[] and
out[], whose size is 4-byte. The thread block is two dimensional,
and the size is 256 (16 threads for each dimension). We are now
trying to improve the performance of this program by using shared
memory. We do not consider the thread block size as a parameter
here, so the thread block dimension remains the same.

1 Although there are other types of memory sharing the off-chip DRAM, we
do not mention them here for simplicity because we focus on only global
memory and shared memory in this paper.

2 2010/8/1

Figure 2. Data reuse within one thread block

3.1 Example 1: What to fetch into shared memory
Since shared memory is often used as a fast local buffer for fre-
quently accessed data, it is intuitively obvious that we get to
think about data reuse. There is an overlap among the mem-
ory regions accessed by existing three references row∗MAX+col,
row∗MAX+col+1, and row∗MAX+col+2 to array in[] within one
thread block. This means that we can have data reuse by fetch-
ing some data from array in[]. Figure 3 shows the code converted
to use shared memory where the data accessed by the reference
row∗MAX+col is fetched into. This code will serve as a running
example throughout this section. Here, we only consider the exist-
ing three references as our candidates to use as a fetch function, for
simplicity. As shown in Figure 2, row∗MAX+col+1 has the largest
overlap among three candidates. Thus, fetching data using that ref-
erence should incur the most data reuse and result in the fastest
runtime. However, the actual runtime turns out differently.

1 i n t row = bIdx . y∗bDim . y+ t I d x . y ;
2 i n t c o l = bIdx . x∗bDim . x+ t I d x . x ;
3 f l o a t t1 , t2 , t 3 ;
4
5 s h a r e d f l o a t s i n [BLKDIM] [BLKDIM] ;
6
7 s i n [t I d x . x] [t I d x . y] = i n [row∗MAX+ c o l] ;
8
9 i f (c o l >= MAX−2)

10 re turn ;
11
12 t 1 = s i n [t I d x . x] [t I d x . y] ;
13
14 i f (t I d x . x == bDim . x−1)
15 t 2 = i n [row∗MAX+ c o l + 1] ;
16 e l s e
17 t 2 = s i n [t I d x . x + 1] [t I d x . y] ;
18
19 i f (t I d x . x >= bDim . x−2)
20 t 3 = i n [row∗MAX+ c o l + 2] ;
21 e l s e
22 t 3 = s i n [t I d x . x + 2] [t I d x . y] ;
23
24 o u t [row∗MAX+ c o l] = t 1 ∗ t 2 ∗ t 3 ;

Figure 3. A simple CUDA program

Table 1 shows the runtimes of kernels on NVIDIA Tesla C1060.
Each row represents the kernel fetching data into shared mem-
ory using each of three references. MAX, the input size, is de-
fined as 16384*16384, making 1024 blocks for each dimension.
BLKDIM, which is the same as bDim.x and bDim.y, is set to
16, so the thread block size is 256. The second column ’data
reuse’ represents the number of times the data in shared memory
is accessed. Counter-intuitively, the case using the first reference
row∗MAX+col is fastest, and even the last case with smallest data

reuse is faster than the second case. This is mainly caused by global
memory access coalescing and shared memory bank conflict, and
we discuss this in Section 5.2.2 and Section 5.2.4.

Data reuse Runtime (in ms)
not using shared mem - 76.15

row*MAX+col 3019702272 61.11
row*MAX+col+1 3086680064 64.86
row*MAX+col+2 3019505664 63.77

Table 1. Runtime results of Example1

3.2 Example 2: How to store data into shared memory
In the above section, we only considered what data to be fetched
into shared memory. However, how the data is stored is also an im-
portant factor that determines the performance of CUDA programs
using shared memory.

In Figure 3, data is written to and read back from shared mem-
ory buffer sin in a column-wise manner, as shown at Line 7, 12,
17, and 22. The way data is stored determines the way data is
read back. If we change the accesses to row-wise manner as in
s in [tIdx .y][tIdx .x], the runtime becomes much faster. This is
not only caused by row-wise and column-wise access. Instead of
changing all shared memory references, we can see the same ef-
fect with changing the shared memory buffer declaration at Line
5 as below. The largest difference in runtime among three cases is
around 20%.

shared float s in [BLKDIM][BLKDIM+1];

Table 2 shows the runtime of each case. This improvement of
runtime is achieved by removing shared memory bank conflict, and
we discuss it in Section 5.2.4.

Runtime (in ms)
Column-wise Row-wise BLKDIM+1

row*MAX+col 61.11 46.06 45.98
row*MAX+col+1 64.86 54.75 54.69
row*MAX+col+2 63.77 55.25 55.39

Table 2. Runtime results of Example2

3.3 Example 3: How to access global memory
Besides shared memory, the way global memory is accessed also
affects performance significantly. There is a global memory write
instruction to array out[] at the end of the code in Figure 3, Line
24. The access is in a row-wise manner. Let us, however, suppose
it is in a column-wise manner as in out[col∗MAX+row] and see
what the results will be different. Shared memory accesses kept the
same in a row-wise manner as we changed in Example 2.

Runtime (in ms)
Row-wise Column-wise

not using shared memory - 3938.08
row*MAX+col 46.06 3933.88

row*MAX+col+1 54.75 3936.23
row*MAX+col+2 55.25 3937.56

Table 3. Runtime results of Example3

The consequence of this change is so tremendous, as shown in
Table 3, that the runtime of the program becomes two orders of
magnitude slower. We even show the case without using shared
memory, and we can hardly see benefit of using shared memory
in three cases. This emphasizes the importance of memory access
pattern analysis in CUDA. The slowdown of this example is caused
by partition camping, and we discuss this in Section 6.2.3.

3 2010/8/1

4. Related Work
Data reuse analysis and hierarchical buffer organizations for scratch-
pad memories have been widely studied in many papers such as
[1, 3, 4]. However, there are fundamental differences between the
baseline architecture in these papers and GPUs. Firstly, global
memory in GPUs is not cached. The loss of performance when
accessing data not fetched into scratchpads is relatively much more
dramatic. Also, the access pattern when fetching data into buffer is
also very important. Secondly, shared memory is only accessible
within threads in the same block, and thread block configuration is
not fixed but can change, so the data reuse analysis is more difficult
in GPUs. Moreover, data reuse is not the only dominant factor in
performance as described in Section 3.

Since traditional data reuse analysis does not apply very well to
GPUs, many researchers started to work on analytical performance
models, to help developers optimize GPGPU applications more
easily. Ryoo et al. [16] modeled the amount of parallelism em-
ployed in a program and the efficiency of a single kernel execution
in a thread, but they did not consider memory access latency assum-
ing all programs as non-memory intensive applications. Later work
[5, 6] considered the cost of both computation and memory ac-
cess. Hong et al. [6] proposed an analytical model that includes the
effect of parallelism to hide global memory access latency. Their
model, however, does not take into account shared memory and
other detailed architecture-specific features such as global mem-
ory access coalescing. The model proposed in [5] includes shared
memory bank conflict, but neither of these two approaches consider
data reuse, branch path divergence, partition camping, etc. Compar-
ing to all the above works, our approach is a more complete model
for analyzing memory performance in that every aspect of global
memory and shared memory is considered.

As a more aggressive solution to relieve the burden on program-
mers, many researchers have been interested in automated opti-
mization of GPGPU applications. Ueng et al. [12] first presented
a tool which optimizes a program automatically. However, it re-
quired programmers’ annotations on source code in a specific for-
mat to find out any possibility of optimization. Baskaran et al. [11]
proposed a compiler framework which automatically explores bet-
ter program design and transforms a program to the more desirable
structure. They presented a source to source compiler in more re-
cent work [14]. Later, another work [13] also presented a source-
to-source compiler with a few improvements such as weighted cost
model that balances parallelism and locality, exploring more bene-
ficial tile size and thread block size, local buffer size, etc. However,
in both approach, data reuse in shared memory can only be em-
ployed when the corresponding global memory accesses cannot be
coalesced. The serialized execution by branch path divergence or
partition camping is not considered as well. Recently, Yang et al.
[10] presented another optimizing compiler that generates an opti-
mized program from a very naive kernel function. Their approach
takes into account most of the factors that we consider in this pa-
per, but the model of coalescing is incomplete and branch path di-
vergence is not considered either. Overall, none of the above work
comes up with a comprehensive performance metric to estimate
the efficiency of memory access pattern. Any undesirable pattern is
simply avoided shortsightedly, even if it is possible that the overall
performance can be improved by changes in other factors.

5. Our Approach
5.1 Overview
The examples in the previous section show that a small change in
memory access pattern can result in a huge performance difference.
Those performance considerations are often affected unexpectedly
by a small change. To address this problem, we aim to help pro-

grammers decide design parameters related to memory access pat-
tern of a program. Given a set of parameters listed below as in-
put, CuMAPz analyzes the program’s memory access pattern and
checks all of the well-known performance considerations.

• Thread block / grid dimension
• Information for each in global memory array

Array dimension

Array element size

Reference(s) for each array
• Information for each in shared memory buffer

Buffer dimension

Mapping to global memory array

− Global memory read reference & Shared memory write
reference (when used as a read buffer)

− Global memory write reference & Shared memory read
reference (when used as a write buffer)

• Loop information (only if it is with array references)

Initialization, Terminating condition, and Step
• Hardware Information

Number of channels in global memory

Width of channel

Number of banks in shared memory

Using the given thread block size and the loop information,
CuMAPz constructs a loop structure that exactly follows the ex-
ecution of each warp in a block. It essentially traces memory ad-
dresses which are accessed in a program. Then, it checks 1) how
many times data in shared memory is accessed (data reuse), 2) how
global memory accesses are coalesced, 3) if global memory ac-
cesses are not skewed to some of memory channels, 4) if shared
memory accesses generate any bank conflict, and 5) if the use of
shared memory introduces a branch. All these factors are explained
in detail in next section. Combining all of these factors, the output,
profitability, is calculated according to the formula which will also
be described in next section.

Note that we do not explicitly take shared memory references as
input. We only keep track of the mapping between global memory
array elements and shared memory array elements. For example,
Line 7 in Figure 3 is a pair of a global memory read reference and
a shared memory write reference, which represents the mapping.
Shared memory accesses are inferred by global memory references
read from (or write to) the position where shared memory buffer
is connected. We assume that the mapping is one-to-one, so one
element in global memory array is only mapped to an elment in
one buffer.

Profitability is a relative metric, so there is no use in having
only one profitability value. Once a set of profitability values are
calculated for different input parameters, each profitability value
can represent the relative memory performance of the correspond-
ing parameters. Having higher profitability means more efficient
memory access pattern which can lead to faster runtime.

5.2 Memory Access Pattern Analysis
5.3 Data Reuse
As discussed in Section 3, the use of shared memory can improve
program performance dramatically. Since shared memory is used
as a local buffer, it is obvious that we should maximize data reuse
as long as other factors are not negatively affected, which will be
discussed later in this paper.

4 2010/8/1

Any instance of global memory reference can be represented as
an absolute memory address. For each element in shared memory
buffer in a thread block, the associated global memory address is
obtained by the mapping. During the iteration of loop for each
warp, if a global memory address accessed by the references is
already mapped to one of buffers within the same block, then a
counter is increased. In order to state the degree of data reuse in
figures, CuMAPz maintains the counter to count the number of
times shared memory buffers are accessed. Then, the degree of data
reuse is represented in a term, data reuse, as follows:

data reuse =
bytes shmem

bytes buffered
(1)

bytes buffered =
∑
m∈M

∑
w∈W

bytes trwm

bytes shmem =
∑
r∈R

∑
b∈B

∑
w∈W

bytes shmemw
r

, where M , R, B and W denote the set of all global memory ref-
erences in mappings between global memory array and buffer, the
set of all global memory references, the set of all buffers, and the
set of all warps, respectively. bytes trwm represents the bytes trans-
ferred while feching data from global memory (or updating global
memory with data written in buffer), in warp w. bytes shmemw

r

denotes the bytes read from (or written to) shared memory buffer
for data required (or written) by global memory reference r, dur-
ing the execution of warp w. The buffer b is not in the variable
because we assuem one-to-one mapping between global memory
array and buffer, which means a unique b is determined by the ad-
dress accessed by r. The concept of the bytes transferred in the
term bytes tr is detailed in next section. bytes buffered can be
regarded as the buffer size, but as in the example from Section 3, the
buffer dimension is not always the same as the amount of data filled
to the buffer. Therefore, we maintain a seperate variable to keep the
amount of data transfer between global memory and shared mem-
ory.

5.4 Coalesced Global Memory Accesses
In CUDA architecture, global memory accesses by a half warp,
16 threads with consecutive ids, are coalesced into fewer number
of transactions. Coalescing happens when threads in a half warp
access an aligned and continuous memory region2. The alignment
should be 32-byte, 64-byte, and 128-byte for the element size of
one, two, and four byte, respectively. The best bandwidth utiliza-
tion is achieved when threads in a half warp access aligned 16 con-
secutive elements in an array. In other words, if the access pattern
does not satisfy the above condition, coalescing incurs some waste
of bandwidth. It is because even unnecessary data is transferred as
a chunk.

Figure 4 shows the global memory accesses of threads of a
half warp by references in the program from Section 3. Boxes in
the upper row represent threads in a half warp, and the ones in
the lower row represent global memory space. As you can see,
reference row∗MAX+col+1 is misaligned, which results in only
50% of bandwidth utilization. Misaligned access is often the main
cause of any waste of bandwidth, but not only is.

CuMAPz analyzes the coalescing behavior according to the
complete description in CUDA Programming Guide [7]. When ad-
dresss accessed by a global memory reference is not mapped to any
buffer, global memory access occurs. The transaction size, of 32-
byte, 64-byte, and 128-byte, is determined for the memory access

2 The coalescing behavior in devices of compute capability 1.0 or 1.1 is
slightly different from that of compute capability 1.2 or higher, and our
analysis is based on the latter.

(a) by reference row*MAX+col

(b) by reference row*MAX+col+1

Figure 4. Memory accesses by threads in a half warp

pattern in each half warp according to the architecture specifica-
tion [7]. Then, CuMAPz calculates the bandwidth utilization as the
following:

bw util =
bytes acc

bytes tr
(2)

bytes acc =
∑
r∈R

∑
w∈W

bytes accwr

bytes tr =
∑
r∈R

∑
w∈W

bytes trwr

, where bytes accwr and bytes trwr are the size of accessed (read
or write) data and transmitted data, respectively, for reference r in
warp w. It is represented in terms of warps for simplicity, but, as
described in the above, the actual analysis is done at the half warp
granularity.

5.5 Partition Camping
The memory subsystem in CUDA is multi-channel architecture.
NVIDIA GT200 architecture has eight memory channels, and con-
secutive 256-byte regions in global memory are mapped to consec-
utive channels. Each channel is of 64-bit width, and all of channels
can transmit data from memory to cores at the same time in parallel.
In order to fully utilize this setup, the accesses that occur concur-
rently on all SMs, should be evenly distributed among all channels.
Partition camping refers to the case where the accesses are skewed
to only a few of channels, so called partitions [9]. As shown in
Section 3.3, this results in the most significant performance degra-
dation. It is because partition camping essentially makes the bus
width much narrower worsening the bottleneck problem on top of
the slow latency of global memory.

The serious slowdown of a program, in Section 3.3, after chang-
ing the global memory reference row∗MAX+col to col∗MAX+row
is caused by partition camping. Figure 5 shows how the accesses
of the first warps in blocks are mapped to memory channels. The
numbers inside boxes in each channel represent thread block ids.
Considering the thread block dimension, which is 16x16 and the
size of the array element type, which is 4-byte, we can see that
a groups of four consecutive blocks is assigned to each channel,
when using reference row∗MAX+col. However, when using refer-
ence col∗MAX+row, a group of 256 successive blocks is assigned
to each channel as shown in the figure. This leads to the severe
partition camping where all accesses in-flight are focused on one
channel.

To analyze partition camping, we need to know on which chan-
nel the accesses of all warps running concurrently are mapped. This
makes this analysis tricky because to determine which blocks are
being executed concurrently is impossible. Initially, when a kernel

5 2010/8/1

(a) by reference row*MAX+col

(b) by reference col*MAX+row

Figure 5. Memory accesses of blocks mapped to channels

is launched, threads blocks are assigned to SMs in a sequential or-
der so that adjacent blocks are executed on adjacent SMs. Then, it
becomes unpredictable after the first round of schedule since the
order in which thread blocks finish the execution cannot be deter-
mined [9]. If we consider the number of blocks to fill all channels
in their execution of first warps, it is:

n channels× channel width

bDim.X × elem size
(3)

, where elem size is the minimum element size of global memory
arrays. This is basically to estimate the span of initial memory
accesses of warps. To see the skewness of the accesses among
those blocks should be enough to check if there is any potential
performance-aggravating factor in a given memory access pattern.
Thus, the impact of partition camping can be stated in figures as
the skewness of mapping to channels which can be calculated as
follows:

ch skew =
max n block per ch

MAX(1,min n block per ch)
(4)

, where max n block per ch and min n block per ch denote,
respectively, the maximum and minimum number of blocks as-
signed to a channel. When the grid dimension, which is the number
of thread blocks, is smaller than the number stated in the above,
this analysis is skipped.

5.6 Shared Memory Bank Conflict
Similarly to global memory channels, shared memory space is
divided into 16 banks. Successive four bytes data are assigned
to successive banks. All banks can transmit data in parallel, but
each bank can serve one address at a time. When threads in a half
warp access K different addresses within one bank, the accesses are
serialized K times, and this is called K-way shared memory bank
conflicts.

Let us consider the example in Section 3.2. Since, originally,
the shared memory buffer dimension is 16x16 and its type is
float (4-byte), each column in a row is mapped to a bank, and
tIdx.x determines the bank number of the access. Using reference
[tIdx.y][tIdx.x], each thread in a half warp should access one ad-
dress in each bank. After changing the reference to [tIdx.x][tIdx.y],
all threads in a half warp now access 16 different addresses in one
bank. This results in 16-way bank conflicts. Interestingly, changing
the shared buffer array dimension to 16x17 can avoid the bank con-
flicts. It makes the addresses requested by [tIdx.x][tIdx.y] spread
over all banks so that there is no bank conflicts. The runtime
changes in the example in Section 3.2 can be well explained in
this way. CuMAPz analyzes all addresses requested in each half
warp and checks if bank conflicts occur. Then, it accumulates all

Figure 6. Serialized execution of diverged execution paths in a
warp

numbers of bank conflicts in half warps as the following:

n bk conflict =
∑
r∈R

∑
b∈B

∑
w∈W

n bk conflictwr

, where n bk conflictwr is the number of bank conflicts by shared
memory accesses, in warp w, caused by reference r. It is repre-
sented in terms of warps for simplicity, similarly to bw util, but
analyzed per half warp. Finally, the efficiency of shared memory
access is modeled as follows:

shm eff =
n half warp× n buffer

n bk conflict
(5)

, where n half warp and n buffer denote number of half warps
and number of shared memory buffers in a program.

5.7 Branch Divergence
Besides memory latency or bottleneck, one of the factors that affect
performance most significantly is within-warp branch divergence.
As explained in Section 2, the execution of threads is in SIMD
manner. When threads in a warp take different execution paths, then
all paths are serialized as shown in Figure 6.

Branches are introduced when there is uncovered region that is
not buffered into shared memory. As shown at Line 14 and 19 in
Figure 3, two branches are added in order to fetch data that could
not be fetched into shared memory buffer. The other case where
branches can be introduced is when the shared memory buffer size
is not a multiple of the thread block size, but as discussed in the
previous section, shared memory buffer size can often be adjusted
to reduce or avoid bank conflicts. Therefore, we do not consider
this case in this paper.

The penalty of serialized execution can be very different, even
when the number of paths remains the same, according to the pro-
gram structure. It is mainly because if the same memory reference
is spread over different execution paths, then the accesses cannot be
coalesced because each path is taken one after another. Therefore,
the coding style of the kernel in Figure 3 is encouraged to achieve
better performance, which is more accurately predictable by our
approach. In the figure, new variables t1, t2, and t3 are introduced
so that all memory references can happen in a synchronized way.
The same kernel can be coded as shown in Figure 7. The first part
of the code is omitted. Every memory access is duplicated on every
path, which makes the number of memory requests 3 times more
due to serialized execution. Also, note that the code in Figure 7,
has the maximum number of paths taken in a warp of three while
it is four in the code in Figure 3. Though having less number of di-
vergent paths, the code in Figure 7 runs much more slowly. In this
paper, we assume that programmers would not write a code in this
way. Therefore, we simply model the impact of branch divergence
as follows:

branch eff =
n path

n warp
(6)

6 2010/8/1

1 . . .
2
3 i f (t I d x . x == bDim . x−2)
4 {
5 o u t [row∗MAX+ c o l] = s i n [t I d x . y] [t I d x . x] ∗
6 s i n [t I d x . y] [t I d x . x +1] ∗
7 i n [row∗MAX+ c o l + 2] ;
8 }
9 e l s e i f (t I d x . x > bDim . x−2)

10 {
11 o u t [row∗MAX+ c o l] = s i n [t I d x . y] [t I d x . x] ∗
12 i n [row∗MAX+ c o l +1] ∗
13 i n [row∗MAX+ c o l + 2] ;
14 }
15 e l s e
16 {
17 o u t [row∗MAX+ c o l] = s i n [t I d x . y] [t I d x . x] ∗
18 s i n [t I d x . y] [t I d x . x +1] ∗
19 s i n [t I d x . y] [t I d x . x + 2] ;
20 }

Figure 7. A worst case coding style for branch divergence

n path =
∑
r∈R

∑
b∈B

∑
w∈W

n pathw
r

n pathw
s =

{
2, if paths diverged in warp w for r
1, otherwise

, where n warp is the number of warps in a program. To be in
more detail, to check whether paths are diverged or not is done in
this way: if some of addresses accessed by a given reference in a
warp are mapped to shared memory buffers, while others not, then
this not-perfect-coverage introduces branch divergence. CuMAPz
checks this when analyzing data reuse.

5.8 Profitability Calculation
Now all the factors that we explained in the above are combined
together to form profitablity. Profitability stands for how relatively
beneficial the given parameters are for the overall memory perfor-
mance of a program. Profitability is calculated by the following
formula.

Profitability = data reuse× bw util

ch skew
× branch eff

log(1/shm eff)
(7)

The first term represents the degree of data reuse. The second
term represents the efficiency of accessing global memory. The
logarithm of shm eff is taken in order to reflect the relatively
smaller impact of shared memory bank conflict on performance
over other terms.

6. Experimental Results
To validate the effectiveness of our approach, we conducted ex-
periments on how well profitability conforms to the real perfor-
mance. We have implemented CuMAPz using C language. For a
CUDA program, we have first made some sets of parameters that
can change the performance. Then, we compared the profitability
from CuMAPz and the runtime of the real code using the param-
eters of each set. Since runtime is the opposite concept of perfor-
mance, we take the reciprocal of runtime, 1/runtime, and refer to it
as performance. Both profitability and performance values are nor-
malized in order to compare two sets of values in different scales.

(a) Correlation coefficients

(b) Average execution time for a set of parameter

Figure 8. Correlation coefficients and execution time for different
input sizes

We used CUDA version 2.3 for all experiments. For CUDA-
enabled GPU device, NVIDIA Tesla C1060 is used. It is of compute
capability 1.3 and has 30 SMs and 4GB of memory. The host
machine is Intel Core2 Duo E4500 with 3GB of memory. Both
CUDA programs and CuMAPz ran on the same machine, on 64-
bit Ubuntu linux 8.10.

We present results for four benchmarks. Two of them are
Laplace edge enhancement and Wavelet transformation from bench-
mark suites in [2]. The other two of them are matrix multiplication
and matrix transpose from CUDA SDK. The input sizes and thread
block sizes are given on table 4. The Laplace loop is used to show
the problem of what data should be fetched from an array to shared
memory buffer. The Wavelet loop is used to describe the problem
of how large the buffer size should be. Similarly to Laplace, ma-
trix multiplication is also about which data should be buffered at
larger granularity. The problem here is to decide which array to be
fetched, not which data within an array. Lastly, matrix transpose
is to show the problem of choosing the order of access and shared
memory buffer dimension, very similar to the example in Section
3.

6.1 Complexity Considerations
The analysis in CuMAPz is of quite high complexity. To be more
specific, the complexity is:

O(n warp · n gmem ref · n buffer · K)

, where K is the complexity of the loop inside kernel, if there is
any loop involving array references. n warp, n gmem ref , and
n buffer are the number of warps, the number of global memory
references, and the number of shared memory buffers, respectively.

Benchmark Input array size Block dimension
Laplace 8192x8192 16x16
Wavelet 8388608x2 128

matrix multiplication 1024x1024 16x16
matrix transpose 2048x2048 32x32

Table 4. The setup for each benchmark

7 2010/8/1

(a) Profitability and performance

(b) Terms in profitability

Figure 9. Results for Laplace loop

The whole process can take quite long since it is basically serializ-
ing what was supposed to be done in parallel. However, profitabil-
ity is a proportional metric. Except for the partition camping, all
other terms are independent of input size. The ratio between shared
memory access and global memory access remains the same for
different input size. Also, as long as full warps are executed, the
pattern of global memory coalescing and shared memory bank con-
flict do not change either. In other words, we can run the CuMAPz
with smaller input size and still get the correct result. For partition
camping analysis, we should at least maintain the number of blocks
more than the number in Equation (3).

We compared the correlation coefficients between profitability
numbers and performance numbers for various input sizes. Figure
8(a) shows the four results for Laplace benchmark, varying the ar-
ray size from 4096x4096 to 512x512. The correlation coefficients
stay almost the same as we reduce the input size while the execution
times decrease dramatically. The difference between correlation co-
efficients are less than 0.001. We also show the correlation coeffi-
cient and the execution time of GPGPU-sim [15], a cycle-accurate
GPGPU simulator, for the array size 1024x1024. Even though the
difference is less than 0.01, the correlation coefficient of the re-
sults from GPGPU-sim is lower than the results from CuMAPz.
GPGPU-sim even takes more than 30 minutes on average, while
CuMAPz takes only about two minutes on average for 4096x4096
arrays and less than 1 minute on average for 512x512 arrays. Note
that we are only showing the execution time of one case (a set of pa-
rameters), and we tested 9 different cases for Laplace benchmark.
In other words, the total execution time is more than four hours for
GPGPU-sim, while CuMAPz takes less than 20 minutes even with

(a) Profitability and performance

(b) Terms in profitability

Figure 10. Results for Wavelet loop

16 times larger input size. Also note that GPGPU-sim requires a
complete executable program that can run on GPUs as input, while
GPGPU-sim can be run only with parameters even before writing
a kernel.

6.2 Validation
Laplace loop has two arrays, and one of them, which is the in-
put, has nine references. There is overlap between the regions cov-
ered by each reference. While we leave all other parameters un-
touched, we only change what data is fetched from global memory
into shared memory by using each reference one at a time. The
buffer dimension is the same as block dimension, and shared mem-
ory store function is in a row-major access. The input array size for
CuMAPz is set to 256x256, and the execution time of CuMAPz is
0.97 seconds on average for each case. Figure 9(a) shows the com-
parison between normalized profitability and performance for each
case. As shown in the figure, the curve of profitability values well
conform the one of performance values. The correlation coefficient
between two sets is 0.99. To see how profitability is calculated, we
show the values of each term from Equation (6) in Figure 9(b). We
do not normalize the values in this case, but in order to show the
differences among each case more clearly, we put some weights
on data reuse and ch skew as shown in the figure. The degree
of data reuse has affected the profitability much as we can see the
value becomes almost twice from the first case to the last case.
However, the one with the highest degree of data reuse does not
show the best performance mainly because of the bandwidth uti-
lization, which varies from around 40% to over 50%. Bandwidth
utilization is highest when the accesses by a fetch function are
aligned, which applies only to these three cases: [row − 1][col],
[row][col], and [row + 1][col]. Using one of these as a fetch func-
tion, a large part of uncoalesced accesses caused by other six refer-

8 2010/8/1

(a) Profitability and performance

(b) Terms in profitability

Figure 11. Results for matrix multiplication

ences are removed and substituted with corresponding shared mem-
ory accesses. Shared memory bank conflict is not shown in the fig-
ure because there is no bank conflict in any case. The branch eff
stays almost the same over all cases.

Wavelet loop has three arrays in it, and one array which serves
as an input has six references. Here we increase the buffer size,
shared memory array size, starting from the same as block size to
the sixth multiple of it. We model this situation in this way: each
time we introduce a shared memory buffer whose size is the same
as the thread block size. Each buffer is assigned one of the six
references as a fetch function. Figure 10(a) shows the comparison
between normalized profitability and performance for each case.
The input array size for CuMAPz is set to 217, and the execution
time of CuMAPz is 1.24 seconds on average for each case. We
can see that the best performance can be achieved when the buffer
size is the twice of the thread block size. It is because those six
references in each thread access six consecutive array elements, and
the starting address of memory accesses in each thread is in a stride
of two. In other words, the buffer size of twice of the thread block
size can employ data reuse the best. Because of the overlap between
the regions covered by each reference, larger buffer size than this
results in unnecessarily fetching duplicated elements. This can be
shown in 10(b) as the degree of data reuse significantly reduces
after the second case, even to less than one. The branch divergence
reduces as buffer size increases, because a branch disappears as one
reference is dedicated to one buffer. All data can be directly read
from shared memory without selecting. Profitability can correctly
predict the relative performance difference among all cases except
for the first case. The correlation coefficient is 0.85.

As for matrix multiplication benchmark, we compare three
cases of fetching one of three matrices (two for input, one for
output) as a whole. Figure 11(a) shows the comparison between

(a) Profitability and performance

(b) Terms in profitability

Figure 12. Results for matrix transpose

normalized profitability and performance for each case. The input
array size for CuMAPz is set to 64x64, and the execution time of
CuMAPz is 0.87 seconds on average for each case. We can see that
CuMAPz can accurately predict the relative performance among
three cases, showing the correlation coefficient of 0.99. In matrix
multiplication code in CUDA SDK, the accesses to the first input
matrix A are not coalesced at all. All threads in a half warp access
exactly the same element at a time because they have to access the
same row. This access pattern results in broadcasting of the data
in devices of compute capability 1.3. The accesses for other two
matrices, the second input matrix B and output matrix C, are com-
pletely coalesced. This is clearly shown in Figure 11(b) in that the
bandwidth utilization for the first case is 100%. Since the thread
block size is 16x16, the degree of data reuse is 16 in two cases of
fetching A or B, while it is only 1 when C is fetched. We exclude
the data for other terms because there is not any bank conflict,
partition camping, and branch divergence.

We show the comparison results for the matrix transpose bench-
mark in Figure 12(a). The kernel has been used as a model to
show how various parameters impact the performance in CUDA.
We also use the same conversions done in [9]. First, the naive
transpose kernel is converted to use shared memory so that unco-
alesced global memory accesses become coalesced ones. Second,
the shared memory bank conflicts are removed by the same tech-
nique we used in Section 3.2. This conversion does not bring much
of performance improvement because the code is suffering from
severe partition camping. Therefore, we remove partition camping
using diagonal coordinates [9] in next case. Then, in the last case
we again roll back the modification done in the second case to see
the effect of shared memory bank conflict. This entire story is ap-
parently shown in Figure 12(b). ch skew values in the first two
cases are very high, which can be interpreted as partition camping,
while they are not for the other two cases. Bank conflicts are basi-

9 2010/8/1

cally turned on and off for each case, switching 100% and 6.25%
of shared memory efficiency. The input array size for CuMAPz is
set to 512x512, and the execution time of CuMAPz is 1.98 seconds
on average for each case.

7. Limitation
Our approach is basically in a form of static code analysis. There-
fore, we cannot handle any information that can only be determined
during run-time, such as dynamic allocated shared memory, indi-
rect array accesses where the indices are loaded from memory, etc.

Also, we assume that adequate occupancy is achieved. Occu-
pancy is a term that represents how many thread blocks can be
scheduled on one SM so that the hardware is kept busy. Occupancy
is determined by thread block size, shared memory array size, the
number of registers used, etc. Low occupancy leads to significant
performance degradation. However, NVIDIA suggests that 50% of
occupancy, thus 50% of the maximum number of in-flight threads
that a SM can have, is often enough to achieve the best performance
[7]. We do not consider the effect of occupancy in this paper.

Another limitation is that we are not able to identify the bottle-
neck of a given program. For example, let us say the bottleneck of
one program is in computation time, not in memory load and store
time. Then, the change in memory access pattern may not affect
the performance of the program. Thus, even if profitability values
are significantly different for different input parameters, the actual
runtimes may remain unchanged. However, having a higher prof-
itability means better memory efficiency, which would never harm
the performance. Thus, it should still be useful to check the effi-
ciency of memory access pattern.

Lastly, profitability cannot be used to compare performance
between two different kernels. It is only a relative metric, and this is
because no information about the program structure or instructions
is considered in the metric. However, the use of profitability lies in
helping programmers decide parameters regarding memory access,
by providing a method to estimate the performance of using those
parameters, before even writing and running a program.

8. Conclusion and Future Work
GPGPUs are affordable yet powerful high performance computing
platforms. It is, however, very hard to optimize a program to exploit
the best performance, due to complex memory hierarchy and many
details in programming model to be considered. Especially, the
memory efficiency affects the program performance dominantly, so
being able to choose more beneficial design parameters on mem-
ory access pattern is crucial in optimizing GPGPU programs. In
this paper, we present a tool, CuMAPz, to analyze the efficiency
of memory access pattern of a program, which can guide develop-
ers to decide design better design parameters without even writing
a kernel. Given a set of parameters on memory access pattern, all
well-known performance critical factors, such as data reuse, mem-
ory access coalescing, bank conflicts, etc. are analyzed thoroughly.
The tool outputs profitability, a relative performance metric intro-
duced in this paper. The experimental results show that profitability
can accurately and efficiently estimate the performance of applica-
tions. As for future work, we would like to work on design space
exploration to find the best parameters. As a continuing effort to
relieve the burden on GPGPU developers, our final goal should be
to automate the optimization of a program. Also, the hybrid mem-
ory hierarchy, which has both L1 cache and scratchpads, in new
NVIDIA Fermi architecture, is of our great interests.

References
[1] Panda, P. R., Dutt, N. D., and Nicolau, A. Efficient utilization

of scratch-pad memory in embedded processor applications. In

Proceedings of the 1997 European Design and Test Conference
(ED&TC). March, 1997.

[2] Kolson, D. J., Nicolau, A., and Dutt, N. Elimination of redundant
memory traffic in high-level synthesis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. Vol.15,
No.11, November, 1996.

[3] Kandemir, M. and Choudhary, A. Compiler-directed scratch pad
memory hierarchy design and management. In Proceedings of the
39th Annual Design Automation Conference (DAC). June, 2002.

[4] Issenin, I., Brockmeyer, E., Miranda, M., and Dutt, N. Data reuse
analysis technique for software-controlled memory hierarchies. In
Proceedings of the Conference on Design, Automation and Test in
Europe (DATE). February, 2004.

[5] Kothapalli, K., Mukherjee, R., Rehman, M.S., Patidar, S., Narayanan,
P.J., Srinathan, K. A performance prediction model for the CUDA
GPGPU platform. In Proceedings of The 16th IEEE International
Conference on High Performance Computing (HiPC). December,
2009.

[6] Hong, S. and Kim, H. An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness. In Proceedings
of the 36th International Symposium on Computer Architecture
(ISCA). June, 2009.

[7] NVIDIA Corporation. NVIDIA CUDA Programming Guide, Version
2.3.1.

[8] NVIDIA Corporation. Board Specification, Tesla C1060 Computing
Processor Board. http://www.nvidia.com/docs/IO/56483/
Tesla_C1060_boardSpec_v03.pdf.

[9] Ruetsch G. and Micikevicius P. Optimizing Matrix Transpose in
CUDA. NVIDIA. 2009.

[10] Yang, Y., Xiang, P., Kong, J., and Zhou, H. A GPGPU compiler for
memory optimization and parallelism management. In Proceedings
of the 2010 ACM SIGPLAN conference on Programming Language
Design and Implementation (PLDI). June, 2010.

[11] Baskaran, M., Bondhugula, U., Krishnamoorthy, S., Ramanujam,
J., Rountev, A., and Sadayappan, P. A compiler framework for
optimization of affine loop nests for GPGPUs. In Proceedings of
the 22nd annual International Conference on Supercomputing (ICS).
June, 2008.

[12] Ueng, S., Lathara, M., Baghsorkhi, S. S., and Hwu, W. W. CUDA-
Lite: reducing GPU programming complexity. In Proceedings of
the 21th International Workshop on Languages and Compilers for
Parallel Computing (LCPC). July, 2008.

[13] Leung, A., Vasilache, N., Meister, B., Baskaran, M., Wohlford, D.,
Bastoul, C., and Lethin, R. A mapping path for multi-GPGPU
accelerated computers from a portable high level programming
abstraction. In Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units (GPGPU). March, 2010.

[14] Baskaran, M., Ramanujam, J., and Sadayappan, P. Automatic C-to-
CUDA code generation for affine programs. In Proceedings of the
International Conference on Compiler Construction (CC). March,
2010.

[15] Bakhoda, A., Yuan, G. L., Fung, W. W. L., Wong, H., Aamodt, T.
Analyzing CUDA workloads using a detailed GPU simulator. In
Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). April, 2009.

[16] Ryoo, S., Rodrigues, C. I., Stone, S. S., Baghsorkhi, S. S., Ueng, S.,
Stratton, J. A., and Hwu, W. W. Program optimization space pruning
for a multithreaded gpu. In Proceedings of the 6th Annual IEEE/ACM
international Symposium on Code Generation and Optimization
(CGO). April, 2008.

[17] Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B.,
and Hwu, W. W. Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA. In Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP). February, 2008.

10 2010/8/1

