
Smart Cache Cleaning: Energy Efficient Vulnerability
Reduction in Embedded Processors

Reiley Jeyapaul and Aviral Shrivastava
Compiler Microarchitecture Lab

Arizona State University, Tempe, Arizona, USA.
{Reiley.Jeyapaul, Aviral.Shrivastava}@asu.edu

ABSTRACT
Incessant and rapid technology scaling has brought us to
a point where todays, and future transistors are suscepti-
ble to transient errors induced by energy carrying particles,
called soft errors. Within a processor, the sheer size and
nature of data in the caches render it most vulnerable to
electrical interferences on static data in the cache. Data
in the cache is vulnerable to corruption by soft errors, for
the time it remains in the cache. Write-through and early-
write-back [17] cache configurations reduce the time for vul-
nerable data in the cache, at the cost of increased mem-
ory writes and therefore energy. We propose a smart cache
cleaning methodology, that enables copying of only specific
vulnerable cache blocks into the memory at chosen times,
thereby ensuring data cache protection with minimal mem-
ory writes. Our experiments over LINPACK and Livermore
benchmarks demonstrate 26% reduced energy-vulnerability
product compared to that of hardware cache configurations.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: PERFORMANCE
OF SYSTEMS; C.3.3 [Computer Systems Organization]:
SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS—Real-time and embedded systems

General Terms
Reliability

Keywords
soft error, vulnerability, hybrid technique, smart cache ar-
chitecture, energy efficient, cache write-back

1. INTRODUCTION
Continuous technology scaling provides us with the capa-

bility to fabricate complex functionality, into smaller pro-
cessor chips, consuming low-power, and at affordable costs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0713-0/11/10 ...$10.00.

As a result, the use of embedded systems built with such
processors have exploded, with them being used in many
application areas not imagined before. This includes, med-
ical, automotive, security systems, and in- and out-of-body
sensing devices. On the other hand, a consequence of rapid
technology scaling has been that, the transistors have be-
come more fragile and susceptible to soft errors. Soft errors
are transient faults that can occur due to one or more of
several reasons, like electrical noise, external interferences,
cross-talk, etc. However, majority of the soft errors in dig-
ital devices happen due to charge-carrying particle strikes
on the processor that corrupt its logic value. Such corrup-
tion of data used within the processor may lead to system
failure. Charge carrying particles, like alpha-particles and
high energy neutrons (of 100KeV 1GeV from the cosmic
background), have been known to cause soft errors in semi-
conductor devices for a long time [18]. With technology
scaling, even low energy neutron particles (of 10meV 1eV)
can cause soft errors in sub 45nm SRAM memory cells [25];
which is exacerbated by the fact that there are many more
low-energy neutrons, than those with higher energies [10].
At the current technology node, high-end embedded sys-
tems, e.g., smart-phones, tablets, etc., incur a Soft Error
Rate (SER) of about once-per-year, but is expected to in-
crease exponentially with technology scaling [13]. With em-
bedded systems finding use in several safety-critical appli-
cations, the importance of protecting them from soft errors
cannot be overstated. Protecting embedded systems from
soft errors is not easy, as any protection scheme will have
some power and/or performance overheads; they are crucial
concerns for embedded systems. As a result, power-efficient
soft error protection techniques are required for embedded
systems.

In a processor, the cache is most susceptible to soft er-
rors. This is not only because it occupies majority of the
chip area, but also because it has a high transistor density;
it is again, operated at lower supply voltages, reducing the
critical charge (Qcrit) required to flip a stored data-bit [21].
Estimated soft error rates of typical designs such as micro-
processors, network processors, and network storage con-
trollers, show that unprotected SRAMs contribute to more
than 40% of the overall soft error rate. As a consequence
of technology scaling, the size of the on-chip cache increases
steadily with each generation [26]. Since reliability of mem-
ory elements (SRAM cells) is projected to remain constant
for the recent future (the positive impact of smaller bit areas
will be offset by the negative impact of storing lesser charge
per bit), the cache error rate as a whole will increase linearly

105

with cache size [8]. To model the susceptibility of data in
caches, the metric of vulnerability is used [24]. A datum is
vulnerable (or susceptible to data corruption by soft errors)
in the cache, only if it is dirty (written by the processor),
and is then either, i) read by the processor, or ii) written
back to the next level of memory. Herein, the assumptions
of the underlying cache architecture are that:

i) the probability of double-bit errors is negligible (typically
3 orders of magnitude lesser [20]), in comparison to
single-bit errors; simple hardware techniques like in-
terleaving the bits of a cache-line can reduce the onset
of multi-bit errors.

ii) data in the cache is protected by parity bit error detec-
tion [7] (as in popular processor architectures like Intel
Xscale� [11], Intel IA-32� [12], AMD Athlon� [1],
etc.).

In a cache where every cache-line is protected by parity
bits, if an error is detected on a cache-line which is not dirty
(.i.e., clean or not updated), it can be invalidated and re-
loaded from the memory as a cache-miss. One method to
protect cache-data from soft errors, is by ensuring that an
updated copy of all the cache-data is available in the mem-
ory (to re-load, when an error is detected). A write-through
cache ensures such a scenario, by writing copies of cache-
blocks as and when they are updated in the cache, thereby
realizing zero vulnerability. However, write-through caches
suffer from very high memory traffic between the cache and
the rest of the memory subsystem. These memory-writes
keep the data-bus busy, thereby increasing the cache-miss
latency for new memory accesses, and affect the overall per-
formance of the system. Another consequence is excess en-
ergy consumed by the memory subsystem:

i) at the data-bus between the cache and the lower levels
of memory (which are typically off-chip in embedded
systems), and

ii) by accesses to the lower level memory components on
every write-back; increasing the total power consump-
tion of the system.

To find a middle ground, Early Write-Back (EWB) [17]
cache architecture was proposed; In this, all the dirty cache-
blocks are written back to the next level of memory only at
periodic intervals. Reducing the frequency of write-backs,
reduces the memory traffic and therefore the power con-
sumption of the system, but at the cost of cache-data vulner-
ability, when compared to a write-through cache. By vary-
ing the periodicity of cache write-backs, EWB caches can
explore the inversely proportional trade-off between vulner-
ability reduction and power overhead due to the additional
memory traffic.

Both these techniques write-through (WT), and early write-
back (EWB) are hardware techniques, and are not sensitive
to the data access patterns of the application. For example,
if a datum is vulnerable across two write-back periods (in the
EWB technique, by executing write-backs at designated in-
tervals), the additional write-backs eventually do not affect
the vulnerability realized, but only increases memory traffic.
If the cache write-back process can be customized accord-
ing to the changing data access pattern of applications, vul-
nerability reduction can still be achieved, but with reduced

number of write-backs, and thus reduced power overheads.
Thus, there is scope for power-efficient vulnerability reduc-
tion by customizing the write-backs based on the data access
patterns of data in a program.

In this paper, we propose a hardware-software hybrid scheme:
Smart Cache Cleaning (SCC), that provides a means to dy-
namically moderate the cache write-backs and thus achieve
power-efficient vulnerability reduction in embedded systems.
Our scheme is composed of three important components:

1. application analysis to determine, which data accessed
in the program, has to be write-back and when the
said write-back has to be executed, to achieve power-
efficient vulnerability reduction,

2. succinctly represent the time sequence identified as to
when a reference must be written back, and

3. transfer this information to the specialized SCC ar-
chitecture, that performs write-backs of the specified
references at specified times.

Our experiments over scientific benchmark loops like Liv-
ermore [2] and LINPACK [19] show that smart cache clean-
ing achieves 26% better energy-vulnerability product than
the lowest energy-vulnerability product achieved by the EWB
scheme (across various write-back periods). Our SCC scheme
achieves almost zero vulnerability, at < 1% power overhead.
Using the EWB scheme, to achieve the same level of vulner-
ability, a minimum of 40% and an average of 2.88× power-
overhead is incurred.

2. DATA CACHE VULNERABILITY

t

W W E

t

W R EW R

IVT1

IVT2 IVT3

(a) W-W Access

(b) W-R-W Access

Vulnerable lifetime of
data in the cache

Figure 1: Intermediate Vulnerable Time (IVT) .i.e.,
the time a data element remains vulnerable in the
cache is defined for two data access patterns (where,
W=Write, R=Read, E=Eviction): a data element
once written is vulnerable as long as it remains in
the cache across read accesses. Since the second
write (W) operation over-writes the updated data
element, any error that may affect the unused data
in the cache, deems the access as not-vulnerable for
that time slot.

On a store operation from the processor, a data element in
the cache (byte or word) is written. The containing cache-
line now is deemed dirty, such that this becomes the only

106

updated copy of the data stored. The time that such dirty
cache-data remain in the cache, it is vulnerable to data cor-
ruption by soft errors. Over the sequence of different ac-
cesses on the cache-data (write (W), read (R), eviction or
write-back (E)), the vulnerability of the data varies based on
its usage. We define Intermediate Vulnerable Time (IVT),
as the duration for which a data element is vulnerable in
the cache; after being updated by a write operation. Data
access patterns in a program can be broadly classified into
two types WW (write only) and WR (write and read). In
Fig. 1, the two data access patterns over a data element are
portrayed, and the IVT definition in each case is highlighted:

a) The updated (written) data may be over-written by
the program. In this case, since the updated data (in
the first write operation) is not used but again up-
dated, any soft error on the stored data between the
two write accesses is not recognized. Therefore, the
IVT for the data here is only the time from the last
write operation to the time it was evicted (E) from the
cache; when the data updates the underlying memory.

b) The updated (written) data may be used by other data
accesses (read) during the course of the program. Since
the correctness of this data is essential for the correct
functioning of the system, it is vulnerable throughout
this duration in the cache (till eviction E). However,
as in Fig. 1(b), if the same data is updated by another
write operation, the data is over-written; therefore,
the time slot between the last use (read) and update
(write) opertion is deemed not-vulnerable.

3. MOTIVATION
We motivate the need for a mechanism to dynamically

moderate the cache write-backs, with help of an example as
in Fig. 2(a). For this, we take a two-dimensional loop operat-
ing over two arrays, executing for a total of nine iterations.
We assume that, during the course of the program, there
occur no cache-evictions or write-backs due to cache-line re-
placements; the program terminates on the 10th iteration or
cycle and all the cache-data is finally written-back to the
memory. We again assume that the cache is protected with
a parity-bit error detection mechanism, such that its copy
from the memory can be re-loaded, if an error is detected
on the cache-data. From the definition of vulnerability, we
observe that the three elements of array B are only read,
and therefore not vulnerable. On the other hand, the three
elements of array A are updated (read and written) on every
iteration, and therefore vulnerable for the entire time that
they remain in the cache. In Fig. 2(c), a time-line for the
program execution is drawn and below it, in each section is
the cache behavior on the elements of array A, in each cache
write-back configuration. Immediately below the time-line
in Fig. 2(c), the position of each element of array A denotes
the time it is first accessed by the program (for e.g., A[2] is
first accessed when index i=2 and j=1 on the 4th iteration
of the program); the vertical dotted line that follows, indi-
cates the last iteration it is updated/used by the program.

In the baseline write-back cache configuration, once an
element is loaded into the cache, it is not evicted by any
additional write-backs. Therefore the data element remains
vulnerable from its first access (write access) till the end
of the program; described by red bars, for each element,
extending from the start to end of its life-time in the cache.

The total number of write-backs (wb) and the vulnerability
(vul) of each data element is marked on the right of the
time-line. In the write-through cache configuration, on each
iteration when the data in the cache is updated, it is also
written-back to the memory. The downward pointing arrows
in Fig. 2(c) denote the write-back operations in the cache,
on every iteration of the program; which is a characteristic
of the write-through cache configuration. Rightly so, the
vulnerability of data in the cache is 0, because there always
exists a copy of the updated data in the lower level memory
(which can be re-loaded when an error is detected in the
cache), and data in the cache is always clean.

On similar lines, we explore the vulnerability vs write-back
count ratio of the early write-back (EWB) cache architec-
ture and our customized smart cache cleaning scheme. Li
et.al. [17], report through design space exploration the power
efficiency trade-offs involved in the choice of a write-back
period. Based on their recommendations and using a con-
servative estimate for the sample program and cache model
considered, we set the write-back period to be 4 iterations.
In this, once every 4 iterations of the program, the EWB ar-
chitecture identifies dirty data in the cache and writes-back
the same into the lower-level memory, thus rendering the
data clean. We observe that this mechanism achieves 55%
reduction in data-cache vulnerability, at the cost of only 22%
additional write-backs (compared to the WT cache)to the
lower-level memory. The highly regular nature of the sam-
ple program here, ensures such a profit by this technique,
but such is not the case in general purpose applications. We
arrive at such a conclusion owing to some key observations
on the operation of the EWB scheme:

1. The pre-defined periodic nature of the write-backs rarely
corroborate with the data access patterns of the appli-
cation. Cache-data here, more often than not, tend
to remain vulnerable beyond the time they are re-
quired and/or updated by the program. For example,
in Fig. 2(c) the double-ended arrows indicate the time
that each data element remained vulnerable, after it
was last updated by the program. This functionality
of the EWB scheme, causes the array A to be, vulner-
able for an additional 4 unused iterations.

2. The working of the EWB scheme is to identify all dirty
cache-lines on each period and perform write-backs on
all of them, may require writing-back (or cleaning)
data when it can be used/updated by the program
in the immediate future. For example, in Fig. 2(c),
during the access time of A[3], a periodic write-back
(once every 4 iterations) cleans A[3] in addition to
the previously accessed A[2]. However, since A[3] is
updated the very next iteration (which in-turn is the
last iteration it is used), the data remains vulnerable
from then till the end of the program. This function-
ality of the EWB scheme, while reducing vulnerability
by one iteration, causes the data to remain vulnerable
for one additional iteration; the additional vulnerable
time would at the least be four, if the program runs
for more than 10 iterations.

In Fig. 2(c), the last section below the time-line, describes
the vulnerability of each data element and the number of
write-backs required in our smart cache cleaning technique.
Here, we observe 67% vulnerability reduction, with only

107

for(i : 1 to 3){
for(j : 1 to 3){
A[i]+= B[j];

}
}

(a) Example program

Cleaning
Period

Vulnerability
of Array A

Additional
write-backs

No WB 18 0
WT 0 9

EWB 4 8 2
SCC 6 3

(b) Tabulated program statistics

2 4 6 8 101 3 5 7 9

A[1]
A[2]

A[3]

vul =9
vul =6
vul =3

Program
time-line
(iterations)

Write-back
cache w/o
evictions

End of program

Write-Through
cache

wb =9
vul =0

wb =0

Early
Write-Back
(Period = 4)

A[1]
A[2]

A[3]

vul =3
vul =3
vul =2

wb =2

Smart Cache
Cleaning
(Clean at end
of use)

A[1]
A[2]

A[3]

vul =2
vul =2
vul =2

wb =3

(c) Cache write-backs and its vulnerability impact
End of data use

Unused but
vulnerable

Premature
write-back

Figure 2: Demonstrating the need and importance of smart cache cleaning. (a) Two dimensional loop
operating over two data arrays one read-only (B) and the other read-and-written (A). (b) Summary of array
A’s vulnerability in each cache configuration shows the SCC scheme achieves energy efficient vulnerability
reduction. (c) Detailed iteration-level analysis of cache write-backs, in each configuration, and their impact
on the vulnerability of array A’s elements.

one additional write-back (compared to the EWB scheme).
Here, i) data is vulnerable in the cache only for as long as it
is used; and ii) every write-back operation is timed and po-
sitioned in such a way that it achieves overall vulnerability
reduction. Such an adaptive scheme, that can dynamically
moderate the cache-write-backs, would thus achieve power
efficient vulnerability reduction on cache-data.

4. RELATED WORK
Careful selection and screening of materials [3], SOI fab-

rication technologies [5], increasing the transistor size or
adding gated resistors [22] are some hardware techniques
proposed to reduce soft errors in SRAM cells. In addition
to the chip area and power overheads, the cost of design and
fabrication of such device/circuit level techniques, and the
yield obtained upon manufacture, over-weighs the reliability
achieved. This reduces its applicability and/or wide-spread
use of such methods to protect embedded systems. At the
architecture level, ECC based techniques like SECDED [9]
provide a means to protect the caches by storing ECC codes
for every cache block and checking the same for correct-
ness when used by the processor. In this, 8 check bits are
required for every 64 bits of cache-data, which involves a
12.5% increase in the size of the cache. In addition to
this, additional logic, to generate and verify the ECC codes
of the read/written data, is added to the cache read-write
path. Li et.al [16] in their work indicate that the hard-
ware costs (area, performance and power) incurred in the
implementation of such an ECC based error detection and
correction technique is unacceptable for embedded systems.
Sridharan et al [26], propose selective re-fetching of cache
lines combined with a write-through cache implementation

to achieve 85% reduced cache vulnerability at the cost of
2.5% power, 7% performance and 15% chip area overheads.
Authors in [17], propose to use a fixed interval early write-
back technique to periodically clean the dirty cache lines
and reduce their vulnerable lifetime. In spite of the reduced
hardware overhead involved in its implementation, such a
technique has been shown to achieve an effective trade-off
between vulnerability and power only for large caches (hun-
dreds of MB or GBs). Zhang [27] in his work, proposes
two hardware based techniques (LRU and Dead-time based
prediction scheme), to vary the periodic interval between
write-backs from the L1 cache to the underlying memory.
In this, the methodology used does not acknowledge the
availability of 1-bit parity based error detection hardware in
almost all modern processors, thereby underusing the avail-
able resources. In addition, for the implementation for such
a smart hardware only scheme, the additional hardware re-
quired would add to the additional write-backs executed,
thereby adding to the total hardware performance and en-
ergy costs to the system. In this work, we aim to achieve
increased reliability in a system, by utilizing the available re-
sources in the system, with minimum additional hardware,
performance and/or energy costs. We also show through ex-
periments over varying range of periods, that such a hard-
ware technique when implemented in an embedded proces-
sor, has a significant impact on the number of cache write-
backs and thereby adds to the power consumption of the
system and also affects performance.

Software solutions are preferred as they can be imple-
mented on existing architectures. The authors in [24] de-
velop Cache Vulnerability Equations (CVE) to determine
statically the vulnerability of a program for a particular

108

cache configuration. We motivate on this understanding
of data reuse and cache vulnerability to develop a profile
analysis techniques to determine important store references
and accesses that have to be cleaned to achieve vulnerability
reduction with reduced memory writes.

Software-hardware hybrid techniques have the advantage
of reduced architecture overhead and the flexibility and ac-
cessibility to hardware structures aided by software tech-
niques. Chen et al [6], propose a compiler based technique
to determine the critical data used in the application and
enable error correction techniques(ECC) for only those data
elements. Partially Protected Caches (PPC) in which a por-
tion of the cache is protected against soft errors can achieve
around 47X vulnerability reduction in data intensive mul-
timedia applications [15]. Lee et.al [14] then propose com-
piler techniques to statically partition data into critical and
non-critical, to further enhance the protection available in a
PPC. In this work, we determine the right data to clean and
exactly when to do so through memory profile analysis, and
with the help of hardware support, ensure that vulnerability
reduction is achieved with reduced energy overhead.

5. OUR APPROACH

5.1 Key Idea
Copying a dirty cache block into the memory, through

write-backs (cache cleaning), reduces the vulnerability of
the system but incurs an energy overhead due to memory
accesses. To reduce energy overheads while also increas-
ing reliability in a system, a prudent decision has to govern
each cache cleaning operation ensuring that a memory ac-
cess is performed iff significant vulnerability can be reduced.
In embedded applications, such prudence can be achieved
through profile based techniques which help in identifying
the right references and the right instances that cache-data
has to be cleaned.

5.2 Overview
The memory profile information of a given program is used

to evaluate the vulnerability per cache write-back profit met-
ric for each data-reference (store instruction) in the program
in the Reference Selection stage. For each reference in the
list (scc reference list) and a given threshold scc threshold for
the intermediate vulnerable time (IVT) generated during ac-
cesses, the list of instruction accesses to be cleaned are iden-
tified. This decision formed as a bit stream for each reference
is represented by a k-bit pattern, where k =scc pattern size.
The instruction addresses and their corresponding represen-
tative k-bit patterns (scc pattern) are instrumented into the
given program through compiler directives to be loaded into
their respective hardware components accordingly. With
the help of hardware support from the cache cleaning archi-
tecture, the embedded processor now executes the program
with minimal additional cache write-backs, and maximum
reliability.

5.3 Smart Cache Cleaning Architecture
The shaded blocks in Fig. 4 represent the hardware com-

ponents added to implement our smart cache cleaning tech-
nique. The “SCC Register Pair” contain the instruction ad-
dress (scc insn addr)and bit pattern (scc clean pattern), for
the reference set to be cleaned by profile analysis. On every
access to the targeted store instruction (marked as csw in the

ProfilingProgram

1. Reference Selection

Memory
Profile

csw_reference List

2. Access Selection

scc_threshold

3. Pattern Generation

2. Access Selection

scc_pattern_size

csw_reference List

csw_access_stream

Program
Instrumentation csw_pattern

Cache Cleaning
Hardware Processor

Energy-Efficient &
Reliable Output

Figure 3: Our 4 stage Smart Cache cleaning method-
ology.

instrumented code), an bit-iterator iterates over the pattern
in the scc clean pattern register. A 1 read by the iterator in-
dicates (through the Clean EN signal) that the cache block
accessed has to be cleaned (copied to the memory by a cache
write-back) while a 0 indicates otherwise. The iterations on
this scc clean pattern are wrapped such that the pattern is
repeatedly accessed throughout the program runtime that
the corresponding instruction is accessed.

The instrumented program input to the processor, con-
tains special instructions to load SCC-data into the “SCC
Register Pair” at specific points in the program based on
the memory profile analysis. The remainder of this section
describes in detail the 4 step procedure that generates SCC-
data for program instrumentation (as shown in Fig. 3) and
thereby trigger the cache cleaning architecture blocks to en-
sure energy efficient reliability. The “Targeted Cache Clean-
ing Block”performs the cache cleaning operation as follows,:

1. the target cache-block address to be cleaned is input
along with the Clean EN signal, from the LSQ.

2. data from the specific cache block is copied, and written-
back into the underlying memory. This operation is
performed after the completion of the sw operation,
and independent of the memory access thereby caus-
ing no interference to the cache performance of the
system.

Overall the SCC architecture requires 1× (32+32) = 64 bit
register, 1× 32bit XOR gate and 1× 2bit AND gate. We
assume here that these SCC registers are protected against
soft errors by energy efficient hardware techniques for the
same. We observe that the targeted cache cleaning architec-
ture exists in most modern embedded processors in the form

109

Figure 4: Smart Cache Cleaning Architecture: The
architecture blocks as part of the SCC are shaded.
Every marked store instruction (denoted by csw) is
compared and based on the cleaning decision read by
the iterator, Clean EN is signaled triggering targeted
cache block cleaning.

of cache-flush execution units, which can be modified (if re-
quired) with minimal hardware changes. It is thus evident,
that the overall area and power overheads of the additional
hardware components required for our SCC implementation,
are minimal and negligible.

5.4 Step 1: Smart Reference Selection
The memory profile data gathered by profiling the appli-

cation is used to identify the set of references that generate
significant vulnerability, and therefore have to be cleaned
accordingly. The key idea behind this reference selection
step is that it is possible to identify the vulnerability gen-
erated by each reference individually and thereby compare
references based on the vulnerability per access metric. This
metric gives an estimate of the possible vulnerability-energy
trade-off that can be achieved if all the reference accesses
are set to be cleaned.

Every store instruction during program execution may ac-
cesses different data elements, and each such accesses ren-
ders a cache block vulnerable. This time for which the ac-
cessed cache block remains vulnerable in the cache, is defined
as the Intermediate Vulnerable Time (IVT) (defined in Sec-
tion 2) generated by that instruction access. In order to
map the vulnerability of a program to the references gener-
ating them, we calculate ref-vulnerability for each reference,
defined as the sum of all the IVT values generated by the
reference during program execution. The profit metric for
each reference is thus given by ref−vulnerability

ref−access−count
. From the

description of our cache cleaning architecture in Fig. 4 we
observe that the there is only one SCC Register Pair and
therefore only one reference can be set to be cleaned at any
point in time. Among the references in the program, the
chosen set of references to be cleaned are those with highest
vulnerability per access values (or highest profit), with non
overlapping execution time-lines.

 . . .
10 0x0010 sw $2, 10($1)

 . . .
 . . .

20 0x0014 l w $4, 10($1)
 . . .
 . . .

30 0x0010 sw $2, 10($1)
 . . .

40 0x0020 sw $3, 20($1)
 . . .
 . . .

50 0x0018 l w $4, 10($1)
 . . .

60 0x0028 l w $5, 20($1)
 . . .

A2
20

A1
10

B1
20

Time
(cycles)

Insn.Addr Reference

Figure 5: Demonstrating Smart Reference Selec-
tion: On the memory profile of a program over its
execution time-line, arrays A and B are accessed by
instruction addresses 0x0010 and 0x0020 respectively.
The individual IVT values (A1, A2, B1) are labeled
and annotated by arrows that connect their W and
R accesses points.

The program in Fig. 5 is of the W-R-W access pattern
and the IVT values generated by reference A is A1, A2 and
that for reference B is B1. From the annotated data in
Fig. 5 we derive the data table Table 1. It can be noted here
that, the efficiency achieved due to higher profit numbers, in
selecting reference B to be cleaned, automatically precludes
selection of reference A under the non overlapping execution
time-lines condition.

Parameters Ref A Ref B
ref-vulnerability 10 + 20 = 30 20
ref-access-count 2 1
CSW Profit 30

2
= 15 20

1
= 20

Table 1: Data table derived for statistics on the ex-
ample program in Fig. 5.

5.5 Step 2: Smart Access Selection
In a program, the ref-vulnerability generated depends not

only on its own data access pattern but also is affected by
other references and data elements accessed on a set asso-
ciative cache, causing cache-block replacements (cache evic-
tion). We thus understand that not all IVT values of a
reference are same owing to possible cache replacements.
Having identified the most profitable reference(s) to clean,
the most profitable reference accesses can be identified as
those that have IVT values greater than a given thresh-
old value (design parameter scc threshold). This thresh-
old defines the maximum time (in cycles) that vulnerable
data can remain in the cache before being evicted or over-
written. For every access by the selected reference, the IVT
values generated (by each access) are compared with the
given scc threshold, and those that exceed the threshold are

110

slated to be cleaned. This cleaning decision is represented
by a bit stream (scc access stream)of length equal to the
total number of accesses by the reference, and a Clean op-
eration is denoted by 1 on the bit stream and a 0 otherwise.
This stream in conjunction with the scc reference list, thus
contains input instructions for the smart cache cleaning ar-
chitecture.

5.6 Step 3: Smart Pattern Generation

Algorithm 1 SCC Bit Pattern Matching ()

Require: scc access stream <csw list>, scc clean pattern size
K.

1: for k from 0 to K do
2: k ones← Count 1s in csw list
3: k zeros← Count 0s in csw list
4: Cost of 0← k ones× 2
5: Cost of 1← k zeros× 1
6: if Costof1 ≤ Costof0 then
7: BitPattern[k] = 1
8: else
9: BitPattern[k] = 0
10: end if
11: end for
12: return BitPattern

The bit stream (scc access stream) represents the set of
accesses that have IVTs greater than a threshold for a ref-
erence that has been identified to have the highest vul-
nerability per access metric. In order to implement cache
cleaning based on this bit pattern, multiple and compli-
cated load instructions are required to ensure that the cor-
rect pattern is loaded into the scc clean pattern register for
the corresponding instruction access. Therefore, a bit pat-
tern of size k (a design pattern defined by scc pattern size),
has to be determined that best represents the bit stream
scc access stream of the reference accesses. In line with our
intentions to ensure smart energy efficient cache cleaning,
we use the SCC Bit Pattern Matching algorithm to analyze
the bit stream and derive a representative k bit pattern.
The SCC Bit Pattern Matching algorithm described in Al-

gorithm 1 reads the given bit stream and using a moving
window of size k bits, the number of 1′s and 0′s in each
bit position are calculated. Using these numbers, a cost is
associated (Cost of 0 or Cost of 1) with each bit position
that represents the cost of representing the bit as 1 or 0
respectively. For example, for a given bit stream, if a par-
ticular bit position in the k sized window, has many 0′s, it
is right to assume that majority of these reference accesses
don’t generate vulnerability greater than the threshold and
will therefore deliver low vulnerability savings for the en-
ergy cost, represented by the Cost of 1 calculated. There-
fore, giving precedence to energy savings, we ensure that a
bit is represented by 1 iff the Cost of 1 is less than twice
the Cost of 0 value. The costs associated with the bit po-
sitions thus ensures that the resultant k bit pattern is an
energy efficient representative of the given bit stream.

5.7 Step 4: Program Instrumentation and Ex-
ecution

From the memory profile of a program, after the first 3
steps, a scc reference list is identified, and then for each ref-
erence in this list, a representative k bit pattern scc pattern
is generated. The program is then instrumented with these

two inputs so as to instruct the processor hardware to load
corresponding values into the “SCC Register Pair”. Using
the memory profile, access points of the first and last ac-
cesses for each reference in the list can be identified, and at
these points, corresponding load instructions are introduced
with the respective reference address and k bit pattern data.
It should be noted here that these instructions are compiler-
directives and will not be executed through the processor
pipeline, thereby involving negligible performance variation.

5.8 Cache Cleaning on Multiple References
Our smart cache cleaning architecture is scalable over the

number of references set to be cleaned simultaneously. In the
above discussion, we illustrate the use of only one SCC reg-
ister pair (scc insn addr, scc clean pattern) while additional
register pairs will enable the hardware to support multiple
references to be cleaned over overlapping execution time-
lines. For this purpose, the only modification in the profile
analysis will be, at step 1 where references are selected such
that n references may overlap in their execution time-lines,
thereby allowing for corresponding access stream and k bit
pattern generation. It should be noted here that additional
hardware structures involve additional area and power over-
heads (32 + 32 = 64 bits for each SCC register pair added),
which does not add significantly to the existing architecture.

6. EXPERIMENTS AND RESULTS

6.1 Experimental Setup
For our experiments, we model an embedded system with

a RISC processor, an on-chip L1 cache and off-chip SDRAM
memory. The SimpleScalar [4] sim-outorder cycle-accurate
simulator is configured to model the Intel XScale [11] pro-
cessor architecture, with a 2-way set associative L1 cache
(size = 4KB). The simulator is instrumented with code to
accurately evaluate vulnerability of data used in the pro-
gram (in byte cycles). To estimate memory access power,
we use power numbers from the MICRON MT48V8M32LF
SDRAM on an Intel 440MX chipset [23] to represent the off-
chip components of the system. The energy per memory ac-
cess is composed of data bus energy (9.46 nJ per burst) and
SDRAM energy (32.5 nJ per read/write burst). The power
consumed during memory accesses is given by the product
of total number of memory accesses and the total energy per
memory access (41.96 nJ). To experimentally demonstrate
the effectiveness of our SCC methodology, the SimpleScalar
sim-outorder simulator is modified to include the Smart
Cache Cleaning Architecture blocks (described in Section 5)
and also recognize our instrumented program instructions
(csw instructions).

To compare the trade-off between vulnerability and energy
on a one dimensional scale, we use the product of vulnera-
bility (in byte-cycles) and memory access energy (in nJ) to
form Energy Vulnerability Product (EVP). Here EVP pro-
vides us with a single metric to quantitatively compare the
impact of the various configurations on both vulnerability
and energy consumption, thereby allowing us to achieve the
required balanced trade-off. In any application, the data
acceses on arrays within nested loops, are the program seg-
ments that contribute to data-cache behavior. We perform
our experiments on benchmark loops from LAPACK [2] and
LiverMore Loops [19], which are scientific, data-intensive
and computation-intensive benchmarks representative of ap-

111

plications executed on such embedded systems. To compile
our benchmarks we used GCC (v 2.7.3) with all optimiza-
tions turned on. In our attempt to analyze the efficiency
and impact of SCC, we experiment over each benchmark
varying all the possible design parameters like scc threshold
(5, 10, 15, · · · , 200 cycles), scc pattern size (4, 8, 16, 32 bits)
and the number of scc insn reg registers (number of refer-
ences to clean). We then compare the EVP values thus ob-
tained with that of a write-through cache and early-writeback
(EWB) cache configuration of varying periods (100, 200, · · · ,
2000 cycles).

6.2 Better Energy-Vulnerability Efficiency With
Smart Cache Cleaning

Figure 6: The graph showing Normalized EVP of
the best EWB period (EWB configuration with least
EVP) and the best scc threshold parameter using
1 and 2 scc insn reg registers, demonstrates higher
energy-vulnerability efficiency with the SCC tech-
nique.

The graph in Fig. 6 plots EVP values, normalized to that
of the original program, obtained for the best EWB configu-
ration and best SCC threshold values. For each benchmark,
among the results obtained for the set of EWB periods ex-
perimented (100, 200, · · · , 2000 cycles), we choose the one
with the least EVP value. Similarly, from the results for
varying scc threshold values, we choose the threshold that
delivers lowest EVP. The graph clearly demonstrates that
overall the benchmarks, the SCC technique achieves lower
EVP and therefore better energy efficient vulnerability re-
duction. From the graph in Fig. 6 we observe:

(1) The second bar (labeled ”SCC (1 Reg)”) represents
normalized EVP values of the SCC technique obtained for
experiments using 1 scc insn reg register, showing the effi-
ciency obtained when only one reference is selected (to be
cleaned) at any point in time. For most benchmarks this bar
remains unseen owing to their significantly low EVP values
(≤ 2× 10−7) indicating highest possible efficiency.

(2) In the case of benchmarks like ICCG, ADI, 2D PIC,
1D PIC and diff-predictor the program contains multiple
references executing in overlapping time-lines with compa-

rable vulnerability per access profits, and therefore the selec-
tion of only one reference seems insufficient. For majority
of the benchmarks experimented we observe that the use
of a second scc insn reg register decreases the EVP signifi-
cantly, which is represented by the third bar (labeled ”SCC
(2 Reg)”).

(3) From the results for the Recurrence benchmark, we
see that the early writeback mode of cache cleaning loses
on EVP by 60% compared to the original program. Ow-
ing to the complex data access pattern in the program, the
best early write-back configuration (EWB period = 1800 cy-
cles) achieves only 26% vulnerability reduction at the cost
of 2X increased memory writes. On the other hand, having
the knowledge of the data access pattern and the flexibil-
ity to enable cache cleaning only at instances that achieve
profitable vulnerability reduction, the SCC technique using
one register achieves 26% vulnerability reduction at < 1%
increase in memory writes. Moreover, with the use of an
additional register, we achieve 100% vulnerability reduction
at 96% increase in memory writes.

(4) The average EVP plots, towards the right end of the
graph indicate that our SCC technique using one scc insn reg
register is 8% lesser, and using two registers is 26% lesser
than that of the EWB technique.

6.3 More Energy Efficient Design Points in SCC

Figure 7: Normalized vulnerability and energy plots
for two benchmarks across varying SCC Threshold
values. The plots for 32-bit Pattern SCC closely fol-
low that by Ideal SCC in DSWAP, while they over-
lap in DAXPY, demonstrating the accuracy of Al-
gorithm 1. Vulnerability and energy trade-off is ob-
served for varying threshold values for each bench-
mark.

For each benchmark, we experiment over varying thresh-
olds and for each perform experiments using the ideal
SCC Access Stream derived after memory analysis and again
using the K-Bit pattern that best matches with the access
stream (determined using the pattern matching algorithm
Algorithm 1). In Fig. 7, The x-axis plots the normalized
vulnerability values, while the y-axis plots normalized en-

112

ergy (number of cache write-backs). For one benchmark, in
the EWB configuration, the early write-back period is var-
ied (100, 200, · · · , 2000) and the normalized vulnerability
and energy overhead incurred are plotted in Fig. 7 labeled
EWB. Similarly, for the same benchmark the vulnerability
and overhead values are plotted for varying threshold values
(5, 10 , 15, · · · , 200), using our SCC technique. In the graph
plotted in Fig. 7, each plotted point is a design point in a
design space exploration to determine the right EWB period
or SCC Threshold to choose for energy efficient vulnerabil-
ity reduction. A design point closer to the x-axis denotes
that it has a low energy overhead, and a point closer to
the y-axis denotes low vulnerability (or increased reliabil-
ity) of the program. A point that is close to the origin (0,0)
is the most efficient point which denotes least vulnerability
at least energy overhead. It can be clearly seen here, that
the results from our SCC technique over varying threshold
parameters have points more closer to the x-axis and also
more closer to the y-axis than any other point in the EWB
plot; thereby demonstrating the energy efficiency realized.
In other words, we say that design points obtained by our
SCC technique are pareto-optimal to design points achieved
by hardware techniques like WT or EWB.

6.4 Generated K-bit pattern achieves close-to-
ideal SCC efficiency

The algorithmGenerate Bit Pattern defined in Algorithm 1,
uses a weighted matching technique to analyze the ideal ac-
cess stream (SCC Access Stream) of a reference selected to
be cleaned, and represents the same as a k-bit pattern. In
our experiments we evaluate the accuracy of the algorithm
over SCC Pattern Sizes 4, 8, 16 and 32. In Fig. 7, the nor-
malized vulnerability and energy values for DAXPY, across
varying threshold values, are plotted for a pattern size of
32bits. It is evident from the overlapping plots of SCC val-
ues in Fig. 7, the values obtained after pattern matching on
a 32-bit register closely follow that of the ideal access stream
(CSW Access Stream). This demonstrates the accuracy of
our Smart Pattern Matching algorithm (Algorithm 1). We
again observe that for larger pattern sizes, the extent of
matching accuracy increases, but when implemented does
not show any significant difference in the vulnerability and
energy numbers. The system designer is thus able to choose
between allowing one 32bit register or 2 16bit registers based
on hardware constraints, and still achieve intended vulnera-
bility reduction.

6.5 EVP decreases with increase in references
to clean

When larger number of SCC registers are integrated into
the system, our SCC technique provides for scalability and
therefore energy efficient vulnerability reduction in the sys-
tem. Fig. 8 plots the EVP values of four benchmarks for
varying numbers of references selected to be cleaned simul-
taneously. For each benchmark, the maximum number of
references allowed is determined through memory analysis.
We observe here that, in each benchmark the small addi-
tional SCC registers, translate into significant EVP reduc-
tion. It is interesting to note that in the Diff-Predictors
benchmark, with the choice of 2, 3 and 4 registers the greedy
nature of selecting references to clean translates into greater
EVP numbers, however as the number of selected references
increases to 7, the EVP is significantly reduced.

Figure 8: The EVP of the application reduces with
increase in the number of scc insn reg registers used.

7. CONCLUSION
By reducing the time that vulnerable data resides in the

cache, we can reduce the probability of an error in cache data
and thereby reduce the overall system failure rate. Hardware
based mechanisms like a write-through cache or an early
write-back cache though efficient in reducing the vulnera-
ble data time in the cache, incurs a large energy overhead
due to increased L1-memory writes. we develop a hybrid
hardware-software Smart Cache Cleaning (SCC) technique,
where we use the memory profile of an application to accu-
rately estimate data vulnerability (time that updated data
is in the cache), identify the program instances that generate
the same. We then enable cache cleaning on specific cache
blocks at specific instances, to ensure energy efficient reduc-
tion of data cache vulnerability. Our experiments over scien-
tific benchmarks show that when compared to the hardware
based early write-back cache architecture, the SCC tech-
nique achieves 26% lower Energy Vulnerability Product.

8. FUTURE WORK
Our profile base method currently identifies references with

higher profit on non-overlapping execution time-lines, but it
is observed that for some applications, the references are
accessed in bursts. In such a case, the use of a reference
to clean can be interleaved with another to achieve better
results. It is possible to analyze loops with affine access
functions statically at the compiler for its vulnerability and
thereby identify the right references and access instances to
perform cache cleaning. Intelligent schemes can be devised
to analyze the data access patterns statically, and thereby
derive the design points for varying threshold and k-bit val-
ues. Such a methodology will help develop a well-rounded
and automated scheme to implement smart cache cleaning.

9. ACKNOWLEDGMENTS
This work was partially supported by funding from Na-

tional Science Foundation grants CCF-1055094 (CAREER),
CCF-0916652, NSF I/UCRC for Embedded Systems (IIP-
0856090), Raytheon, Intel, SFAz and Stardust Foundation.

113

10. REFERENCES
[1] AMD Corporation. AMD Athlon�Processor Product

Data Sheet, 2007.

[2] E. ANDERSON. Lapack: Users’ guide. 1995.

[3] R. Baumann, T. Hossain, S. Murata, and H. Kitagawa.
Boron compounds as a dominant source of alpha
particles in semiconductor devices. In Reliability
Physics Symposium, 1995. 33rd Annual Proceedings.,
IEEE International, pages 297 –302, apr. 1995.

[4] D. Burger and T. M. Austin. The simplescalar tool
set, version 2.0. SIGARCH Comput. Archit. News,
25(3):13–25, 1997.

[5] E. Cannon, D. Reinhardt, M. Gordon, and
P. Makowenskyj. SRAM SER in 90, 130 and 180 nm
bulk and SOI technologies. Reliability Physics
Symposium Proceedings, 2004. 42nd Annual. 2004
IEEE International, pages 300–304, April 2004.

[6] G. Chen, M. Kandemir, M. J. Irwin, and G. Memik.
Compiler-directed selective data protection against
soft errors. In ASP-DAC ’05: Proceedings of the 2005
conference on Asia South Pacific design automation,
pages 713–716, New York, NY, USA, 2005. ACM
Press.

[7] R. W. Hamming. Error detecting and error correcting
codes. Bell System Technical Journal, 29(2):147–160,
1950.

[8] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta,
and C. Dai. Impact of cmos process scaling and soi on
the soft error rates of logic processes. In VLSI
Technology, 2001. Digest of Technical Papers. 2001
Symposium on, pages 73 –74, 2001.

[9] L. Hung, H. Irie, M. Goshima, and S. Sakai.
Utilization of secded for soft error and
variation-induced defect tolerance in caches. In
Design, Automation Test in Europe Conference
Exhibition, 2007. DATE ’07, pages 1 –6, apr. 2007.

[10] E. Ibe, H. Taniguchi, Y. Yahagi, K.-i. Shimbo, and
T. Toba. Impact of scaling on neutron-induced soft
error in srams from a 250 nm to a 22 nm design rule.
Electron Devices, IEEE Transactions on, 57(7):1527
–1538, July 2010.

[11] Intel Corporation. Intel XScale�Technology
Overview, 2000.

[12] Intel Corporation. Intel IA-32�Developer’s Manuals,
2007.

[13] S. Kayali. Reliability considerations for advanced
microelectronics. In Proceedings of the 2000 Pacific
Rim International Symposium on Dependable
Computing, PRDC ’00, pages 99–, Washington, DC,
USA, 2000. IEEE Computer Society.

[14] K. Lee, A. Shrivastava, N. Dutt, and
N. Venkatasubramanian. Partitioning techniques for
partially protected caches in resource-constrained
embedded systems. ACM Trans. Des. Autom.
Electron. Syst., 15:30:1–30:30, October 2010.

[15] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and
N. Venkatasubramanian. Partially protected caches to
reduce failures due to soft errors in multimedia
applications. IEEE Trans. Very Large Scale Integr.
Syst., 17:1343–1347, September 2009.

[16] J.-F. Li and Y.-J. Huang. An error detection and
correction scheme for rams with partial-write function.

In Memory Technology, Design, and Testing, 2005.
MTDT 2005. 2005 IEEE International Workshop on,
pages 115 –120, Aug 2005.

[17] L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir,
and M. Irwin. Soft error and energy consumption
interactions: a data cache perspective. In Low Power
Electronics and Design, 2004. ISLPED ’04.
Proceedings of the 2004 International Symposium on,
pages 132 – 137, Aug 2004.

[18] T. May and M. Woods. Alpha-particle-induced soft
errors in dynamic memories. Electron Devices, IEEE
Transactions on, 26(1):2 – 9, Jan. 1979.

[19] F. McMahon. L. L. N. L. Fortran Kernels Test:
MFLOPS, 1993.

[20] S. S. Mukherjee, J. Emer, T. Fossum, and S. K.
Reinhardt. Cache scrubbing in microprocessors: Myth
or necessity? In PRDC ’04: Proceedings of the 10th
IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC’04), pages 37–42,
Washington, DC, USA, 2004. IEEE Computer Society.

[21] R. Naseer, Y. Boulghassoul, J. Draper, S. DasGupta,
and A. Witulski. Critical charge characterization for
soft error rate modeling in 90nm sram. In Circuits and
Systems, 2007. ISCAS 2007. IEEE International
Symposium on, pages 1879 –1882, May 2007.

[22] L. R. Rockett Jr. Simulated SEU hardened scaled
CMOS SRAM cell design using gated resistors.
Nuclear Science, IEEE Transactions on,
39(5):1532–1541, Oct 1992.

[23] A. Shrivastava, I. Issenin, and N. Dutt. Compilation
techniques for energy reduction in horizontally
partitioned cache architectures. In Proceedings of the
2005 international conference on Compilers,
architectures and synthesis for embedded systems,
CASES ’05, pages 90–96, New York, NY, USA, 2005.
ACM.

[24] A. Shrivastava, J. Lee, and R. Jeyapaul. Cache
vulnerability equations for protecting data in
embedded processor caches from soft errors. In
LCTES ’10: Proceedings of the ACM
SIGPLAN/SIGBED 2010 conference on Languages,
compilers, and tools for embedded systems, pages
143–152, New York, NY, USA, 2010. ACM.

[25] C. Slayman. Alpha particle or neutron ser-what will
dominate in future ic technology, 2010.

[26] V. Sridharan, H. Asadi, M. B. Tahoori, and D. Kaeli.
Reducing data cache susceptibility to soft errors.
IEEE Transactions on Dependable and Secure
Computing, 3(4):353–364, 2006.

[27] W. Zhang. Computing and minimizing cache
vulnerability to transient errors. IEEE Des. Test,
26:44–51, March 2009.

114

