
1

Code Transformations for TLB Power Reduction
Reiley Jeyapaul and Aviral Shrivastava

Compiler and Microarchitecture Laboratory,
Arizona State University, Tempe, AZ 85281 USA

Email : {reiley.jeyapaul, aviral.shrivastava}@asu.edu

Abstract—The Translation Look-aside Buffer (TLB) is a
very important part in the hardware support for virtual
memory management implementation of high performance
embedded systems. The TLB though small is frequently
accessed, and therefore not only consumes significant energy,
but also is one of the important thermal hot-spots in the
processor. Recently, several circuit and microarchitectural
implementations of TLBs have been proposed to reduce TLB
power. One simple, yet effective TLB design for power reduc-
tion is the Use-Last TLB architecture proposed in [1]. The
Use-Last TLB architecture reduces the power consumption
when the last page is accessed again. In this work, we develop
code transformation techniques to reduce the page switchings
in data cache accesses and propose an efficient page-aware
code placement technique to enhance the energy reduction
capabilities achieved by the Use-Last TLB architecture for
instruction cache accesses. Our comprehensive page switch
reduction algorithm results in an average of 39% reduction
in the data-TLB page switching, and our code placement
heuristic results in an average of 76% reduction in the
instrucion-TLB page switchings with negligible impact on
the performance. The reduced page switch count in the
cache accesses of an application achieves an equivalent
power savings over and above the reduction achieved by
the Use-Last TLB architecture. We have demostrated this
energy reduction through experiments on benchmarks from
MiBench, Multimedia, DSPStone and BDTI suites.

I. INTRODUCTION

Power, energy and thermal issues in current and near
future digital systems form the crux of the biggest chal-
lenge that the semiconductor industry faces today. In high-
end computing, power consumption limits the amount of
achievable performance because of exorbitant increase in
the cost of heat removal mechanisms. In battery operated
portable systems, the battery is the single largest factor
in device cost, weight, recharging time, frequency and
ultimately the usability of the system. Translation Look-
aside Buffer or TLB is an important component of high-end
multi-tasking embedded processors, like the Intel XScale.
The TLB performs virtual to physical address translation
and determines page access permissions. Most modern
processors, including the Intel XScale implement virtually-
addressed caches, in which the cache lookup is directly
performed on the virtual address provided by the processor,
and therefore the TLB lookup comes in the critical path.

Elkman et al. [2] note that the TLBs can consume 20−25%
of the total L1 cache energy. Kadayif et al. [3] observed
high power densities of the data-TLB, as compared to the
data-L1 cache. Thus reducing the power consumption of
TLBs is an important research problem. In [3], researchers
show that the iTLB architecture has a power density of
7.820 nW/mm2 compared to 0.975 and 0.670 nW/mm2

for iL1 and dL1, respectively.

Several TLB designs have been proposed to trade-off the
TLB lookup delay, area and power consumption [4], [5].
One simple, yet effective technique for TLB power reduc-
tion proposed in [1], [6], is the Use-Last TLB architecture.
Observing that there is a high probability that instruction
access will refer to the same page as the last one, they store
the previous page translation information into a latch, and
thereby reduce the TLB lookup power. The Use-Last TLB
architecture is able to reduce the instruction TLB power by
75%. However, since data accesses do not exhibit as high
locality as instructions, this microarchitectural technique
was not effective for data TLBs.

For a modified processor with the inclusion of the Use-
Last TLB architecture for both the instruction and data
TLB structures, we present here, compiler directed code
transforamtion techniques to reduce the processor power
consumption, by improving the page locality of data and
instruction cache accesses. We first propose a novel instruc-
tion scheduling and operand reordering technique, heuristic
for deciding when to perform array interleaving, and loop
unrolling to minimize the page switchings between consec-
utive data-TLB accesses, while minimizing performance
loss. Our comprehensive algorithm can reduce the data-
TLB page switches by 39%, with minimal performance
impact experimented over benchmarks from MiBench,
Multimedia, DSPStone and BDTI suites. We then propose
a novel page-aware code placement heuristic to enhance
the page locality of instruction cache accesses and thereby
reduce the power consumption of the instruction-TLB by
an average of 76% with less than 1% variation in perforam-
nce over benchmark applications from the MiBench suite.
It should be noted here that this power reduction obtained
through the code transformations is above and beyond what
the Use-Last hardware technique alone could achieve.

2

II. RELATED WORK

TLB power reduction is important not only to reduce
the total energy consumed by the processor, but also
to alleviate the high power density (hotspot) of TLB in
the processor. Several researchers have proposed efficient
circuit-level, microarchitectural and software techniques to
reduce the power consumption of the TLB and the Memory
Management Unit.

A. Hardware Approaches

Several researchers have proposed efficient circuit and
microarchitectural techniques to reduce the power con-
sumption of the TLB and the Memory Management Unit.
A fully associative TLB architecture with (Content Ad-
dressable Memory) CAM implementation has been proved
to be efficient in terms of performance and power con-
sumption. [7] proposes a banked associative design for
TLBs (BA-TLB) which consumes less power than a fully
associative TLB through the use of a banked design such
that only half the CAM entries are looked up during each
access to the TLB. In [8] the TLB is constructed as
multiple banks with a small filter-bank buffer located above
its associated bank. Through the use of selective filtering
and banking mechanism, the number of entries accessed
is reduced and it therefore proves to be highly efficient in
embedded processors.

Hyuck,.et.al. [9] in their work propose a two-level
TLB architecture that integrates a 2-way banked filter TLB
with a 2-way banked main TLB design. This architecture
aims at reducing the power consumption of the TLB in
embedded processors by distributing the accesses to TLB
entries across the banks in a balanced manner. Chang [10]
in his paper, presents a real-time filter scheme to remove
redundant TLB accesses by distinguishing them as soon as
the virtual address is generated. This in combination with
two adaptive banked TLB designs is proved to effectively
improve the energy delay product of data TLBs. [11]
introduces translation registers (TR) to store the most fre-
quently used TLB translations. During subsequent virtual
address entries, these TRs are looked up and if present the
information stored is used. This saves the switching activity
of the register files in mapping the virtual address to the
physical address. It should also be noted that the granu-
larity at which these hardware architectures alone achieve
power reduction is limited by the number of registers or
only succesive access. The power savings achieved by such
hardware techniques are also limited by the area and power
overheads involved in the implementation.

B. Software Approaches

A compiler-directed array interleaving technique [12]
was proposed to save energy in multi-bank memory ar-
chitectures with power control features. In this, the arrays

used in separate banks are interleaved such that only one
of the banks is active and the other can be powered down,
thus saving energy. The energy reduction achieved by this
technique does not account for the leakage power of the
SRAM cells during standby mode. Parikh et al in [13]
schedule instructions within a block based on the minimum
obtainable value for a weighted cost function:circuit-state
cost.One recent work is [14], where energy reduction
is achieved through effective utilization of resources by
switching between two processor modes based on the cache
misses. These software approaches though achieve power
reduction in the TLB are limited by the applicability to
broad spectrum of applications and also by the compati-
bility to underlying architecture.

C. Hybrid Approaches

Kayadif,.et.al. in [3] present a set of software only, hard-
ware only and integrated hardware-software techniques to
achieve reduced instruction TLB energy consumption. In
this journal, the authors demonstrate through analysis and
experiments the efficiency and advantages of a hybrid
hardware-software technique to reduce TLB power. A
hybrid approach has the critical advantage of modifying the
software in such a way that the architectural modification
is efficiently used through architecture aware software
optimizations. In this work, we propose such a hadware-
software hybrid apporach for TLB power reduction using
the Use-Last TLB architecture in the caches.

One hybrid approach closest in semblance to ours, is
by Kandemir et al. [15]. Their compiler technique is to
increase the effectiveness of a previously proposed archi-
tectural technique that uses Translation Registers or TRs.
The addition of TRs requires changing the ISA, which may
not be desirable in many cases. In contrast, our approach is
to improve the effectiveness of Use-Last TLB architecture,
which exists in the Intel XScale processor. They have to
profile the code to find out which page will be accessed
frequently in the near future, and then generate code to
load the translations to that page into TRs. In comparison,
our approach is a static technique. We do not need/use
profile information. Not only that profile-based compilation
is limited in application and scope, it has huge overhead
in terms of compilation time. Our technique does not have
any such overheads. Finally, in their technique, the code is
modeled as nodes which represent loop nests that access
data from a particular page region. Code transformations
to enhance the use of TRs are directed at scheduling these
loop nests (nodes that access data from a particular page
region) together. In contrast, our approach is to schedule
and transform instructions so that the accesses to the same
page are grouped together. Our technique operates at a
finer granularity than theirs, and could therefore co-exist,
and enhance the effectiveness of each other.

3

III. ARCHITECTURE DESCRIPTION

A. Energy consumption in the conventional TLB

In a VI-VT (Virtually Indexed Virtually Tagged) or VI-
PT (Virtually Indexed Physically Tagged) cache architec-
ture, all data/instruction accesses by the processor are to
virtual addresses. On a cache access, the virtual address
is compared with any existing tag entries in the CAM
based table of the TLB. If the entry exists, it indicates
a cache-hit and therefore, the mapped physical address (of
the data entry) and the corresponding access permissions
are transferred to the output of the TLB, which inturn is
used to address the specific location in the cache. If the
data is not present in the cache, the tag comparison at the
TLB returns a cache-miss and therefore the data is retrieved
from the memory, and the corresponding physical address
and the processor accessing the data is updated as an entry
in the TLB table. It should be noted here that for every
data/instruction access the TLB lookup is activated and
the CAM structure is switched to access the table entries
on every access. This switching energy consumed on every
TLB access is directly proportional to the size of the TLB.

B. The Use-Last TLB Architecture

Proposed in [1], the Use-Last TLB architecture Fig. 1
utilizes a modified TLB-CAM structure. The virtual ad-
dress input is matched with the TLB tag through the CAM
cells (which is optimized for power consumption). The
TLB tag is then used to retrieve the mapped physical
address from the lookup table (register files). The lookup
on the register files is a power consuming process because
of the bit-line and word-line drivers and other associated
circuitry involved in its operation. The key factor in this
architecture design is the latch used to store the tag address
of the previously accessed address. This newly introduced
latch clearly differentiates the two stages of the TLB
operation on every data access. In the first stage, the CAM
cells are activated on every access to check for the presence
of an existing TLB entry. These CAM cells have been
optimized for reduced power consumption [1] because
of the requirement that the tag comparison has to be
performed on every access. At the second stage of the TLB
operation, the compared tag for a cache-hit access, is used
to lookup for the corresponding physical cache address and
access permissions from the table (a register file array). On
a data access, the output of the latch(previously accessed
tag) is compared with the current tag entry and if found
to be equal, the register file array is not looked up, as the
physical address and access permissions from the previous
lookup remain unaltered at the output of the TLB structure.
If the tag entries are not equal, the latch stores this tag
entry and the register file array is switched to lookup for
the corresponding physical address and access permissions.

Fig. 1. Representative block diagram of the Use-Last TLB Architecture
[1]

Since, for every successive data accesses to the same
page, where the tag entries are the same, the register files
(word and bit lines) are not activated, the switching energy
of the RF cells and associated circuitry is eliminated. The
effectiveness of this technique was demonstrated on a 90-
nm virtually addressed microprocessor cache memory sub-
system functioning at 2.5 GHz with 32KB of instruciton
and data cache structures. The instruction TLB demostrated
75% power savings while the data TLB showed 42%. As
can be observed, this technique was inefficient for data
caches, as data accesses in general do not exhibit high
data locality as compared to instruction TLB. Our primary
work aims to enhance the effectiveness of this architectural
technique on data caches through code transformations and
achieve power savings through reduction in the number of
page-switches during successive data accesses. A similar
compiler-directed approach is used to reduce the page-
switches during instruciton accesses in the instruction-TLB
and significant energy reduction is demonstrated in this
journal.

IV. EXPERIMENTAL SETUP

We explore and develop compiler techniques for the Intel
XScale processor [16] on which the Use-Last architecture
was implemented(Section III). Intel XScale is an out-of-
order, 7-stage superpipelined high-end embedded proces-
sor, which runs at up to 1 GHz. The Intel XScale uses TLBs
to implement virtual memory support. The Intel XScale is
intended to be used in wireless and handheld applications
and therefore we execute benchmarks from MiBench [17],
MultiMedia [18], DSPstone [19], Spec2000 [20], and
the BDTI [21] benchmark suites. The sim-outorder cycle-
accurate simulator of the SimpleScalar toolset [22] was
modified to model the Intel XScale memory configuration
and to determine the total number of page switches in the
data and instruciton TLB of a program.

V. ORGANIZATION OF CONTENTS

The remainder of this paper is organized into two
broad parts. In the first part, we develop and demonstrate
our page aware code transforamtion techniques for data-
TLB page switch redcution. Section VI-A describes our
instruction scheduling and operand reordering technique.

4

Section VI-B describes our array interleaving implemen-
tation. Section VI-C describes the conditions for our
implementation of loop unrolling. Section VI-D then
describes our comprehensive algorithm for data-TLB page
switch reduction. In the second part, we describe in detail
our page aware code placement heuristic in Section VII
and demonstrate its efficiency in page switch reduction for
the instruction cache TLB through experiments. We then
conclude and summarise our work in Section VIII.

VI. PART I: DATA-TLB POWER REDUCTION

A. Page Switch-Aware Instruction Scheduling

Instruction scheduling can aggregate instructions that
access the same pages consecutively, thereby reducing page
switches in the data TLB. In addition, for commutative
operations, it is also possible to reorder the operands, and
effect the memory access pattern. We develop a combined
instruction scheduling and operand reordering technique to
reduce TLB page switching.

Fig. 2. Impact of code generation on TLB page switching

1) Technique Overview: We motivate the applicability
and effectiveness of fine-grain instruction and operand
reordering on TLB page switches using a kernel from
the compress benchmark, shown in Fig. 1(a). The kernel
accesses elements from a two-dimensional array. If the
array size is much larger than the page size(which is
typically small in embedded systems), elements from the
higher dimensions may reside in different pages. In this
example, there are high chances that a[i], and a[j] may be
in different pages, if i 6= j. Assuming this, the two code
sequences generated by the compiler, illustrated in Fig.
1(b) and (c), may result in the same performance, they may
differ significantly in the number of TLB switches they
cause. When executed, the code in Fig. 1(b) will result in
accesses in the sequence: a[i][j], a[i−1][j−1], a[i][j−1],
a[i−1][j], and a[i][j], which will result in 4 page switches
per iteration, while the code in Fig. 1(c) will result in only 1
page switch per iteration. Note that depending on the cache

size and page size, the page switches can vary, but if there
is no performance impact, it will be better to generate the
code as in Fig. 1(c). In the rest of this section, we first
formulate the problem of minimizing the page switches by
instruction scheduling and operand reordering. Finding the
problem to be NP-complete, we propose a heuristic for the
same.

Fig. 3. DFG and page mapping of compress kernel

2) Problem Formulation: Input: Data Flow Graph
(DFG) is a directed acyclic graph (DAG) D = (V,E) of a
code sequence. The nodes v ∈ V represent instructions
i ∈ I . An instruction i is represented by a ordered
(k + 2)-tuple i =< op, d, s1, s2, ...sk >, where op is
the opcode, d is the destination, and there are k source
operands, s1, ...sk, d, s1, s2, ...sk ∈ O, where O is the set
of program variables, or operands. There is a directed edge
e = (v1, v2) ∈ E,3 v1, v2 ∈ V , from v1 to v2 if the
destination of the instruction represented by node v2, is
the same as any of the source operands of the instruction
represented by node v1. i.e., (v1.i.d = v2.i.s1)∨ (v1.i.d =
v2.i.s2)∨ ...∨ (v1.i.d = v2.i.sk). The data flow graph will
also have nodes at the beginning of the graph, representing
loading of operands, and nodes at the end of the graph,
representing storing of operands, or intermediate values
that will be carried over to the next loop. The DFG of
the compress kernel is illustrated in Fig. 2.

Output: Instruction Sequence represented by the func-
tion Time : I → N such that all data dependencies are
maintained. i.e., if there is an edge from instruction ia to
ib, then Time(ia) < Time(ib).

Objective: Minimize Page Switches in the instruction
sequence. To estimate page switching at the compiler level,
we define a function Page : O → P , which maps operands
o ∈ O to pages p ∈ P , where P is the set of all the pages
accessed by the application. A source operand may be a
scalar, or an array, and can be defined in a local scope or
a global scope. We define Page(s) thus:

• Page(s) = undefined if the operand s is a local
scalar variable. This is because most probably all the
local scalar variables will be allocated to registers and

5

therefore will not involve in memory access.
• Page(s) = p0 if s is a global scalar variable. We

assume that all the global scalars are allocated to a
single page.

• For the global or local arrays, we assume that each
array, irrespective of it’s size is mapped to exactly one
unique page.

Page Switch Model In addition, we also need a page
switch model, i.e., given a sequence of instructions, how
many page switches will occur. We assume that when an
instruction i executes, its operands are accessed in the order
{i.s1, i.s2, ..., i.sk, i.d}. Assuming that the page accessed
just before the execution of an instruction i is p, then,
we define the page switching function, PSI(p, i1, ...in)
to be the number of page switches when a sequence of
instructions i1, ...in is executed.

PSI(p, i1, ...in) = PSO(p, i1.s1, i1.s2, ..., i1.sk, i1.d,

= i2.s1, i2.s2, ..., i2.sk, i2.d,

= ...,

= in.s1, in.s2, ..., in.sk, in.d)

The total page switch count between operands can be
recursively computed,

PSO(p, o1, ..., om) = PSO(p, o1)
+ PSO(LPO(p, o1), o2, ..., om)

where PSO(p, o) = 1, when both p and Page(o) are
defined, and p 6= Page(o). LPO(p, o) is the last page
accessed when operand o1 is accessed after accessing page
p. The last page function LP (p, o) = Page(o), if Page(o)
is defined, otherwise, it is p.

3) Solution for Page Switch Minimization: To
minimize page switches by instruction scheduling and
operand reordering, we define a Page Switching Graph
PSG full = (I, S), which is a directed graph, whose
vertices are instructions i ∈ I , and there is an edge
from instruction i to instruction j if instruction j can
be scheduled immediately after instruction i. We attach
a weight attribute to each edge w(i, j), which is the
minimum increase in the page switches when instruction
j is scheduled immediately after instruction i. Thus,

w(i, j) =

min

{
PSO(p, j.s1, j.s2, j.d)
PSO(p, j.s2, j.s1, j.d)

if j.op is comm

PSO(p, j.s1, j.s2, j.d) otherwise

where p is the last page that has been accessed after
instruction i is executed. We add a dummy source node,
and a sink node so that there is an edge from the source
node to all the instructions that do not have any predeces-
sors in DDG, and there are edges all nodes that do not

have successors in DDG to the sink node. Dummy nodes
access only undefined pages.

The problem of finding the instruction sequence and
operand ordering that minimizes the number of page
switches is exactly equal to the problem of finding the
shortest hamiltonian path from source node to sink node.
This implies that if we can solve the problem of page
switch minimization in polynomial time, we can also
solve the hamiltonian problem, which is a well known
NP-Complete problem in polynomial time. This is quite
unlikely, therefore the problem of scheduling for page
switch minimization is NP complete. Therefore we focus
our efforts on developing scheduling heuristics for page
switch minimization.

4) Heuristic for Page Switch Minimization: For
heuristics, we first construct a Page-Not-Switching Graph
PNSG = (I,D, S), where the nodes (I) are instructions,
and there are two kinds of edges, first is the set of data
dependence edges D, and the second S is the set of
inter-instruction page not-switching edges. Thus there
is a an edge s = (i, j) ∈ S between two instructions:
i, j ∈ I , if there is NO inter-instruction page switch when
instruction j is scheduled immediately after instruction i.
In other words, (i, j) ∈ S, ∀i, j ∈ I, iff Qps ≥ 1, where

Qps =

min

{
PSO(p, undefined, i.d, j.s1)
PSO(p, undefined, i.d, j.s2)

if j.op is comm

PSO(undefined, i.d, j.s1) otherwise

An example of a PNSG is shown in Fig. 4. The nodes
1 through 7 are instructions, and the solid edges represent
data dependencies. The dashed edges represent the inter-
instruction page not-switching edges. We now perform our
scheduling on this graph representation.

1 2

6

3

54

7

Data Dependence Edge

Page Not−Switching Edge

Fig. 4. Problem in greedy solution

We first developed a greedy algorithm. In the greedy
algorithm, in every iteration, the last scheduled instruction,
l is maintained, and list of instructions that are now ready
to be scheduled, R is created. If there is a page-not-
switching edge between l and any instruction r ∈ R, then
r gets priority, as it minimizes the page switches. Thus

6

suppose instructions 1, 2 and 3 are scheduled, with l = 3.
Then R can be computed as R = {4, 5}. Out of these, the
greedy heuristic will pick up instruction 4.

Fig. 3 illustrates one problem with this simple approach.
In the first iteration, the greedy solution can pick up either
instruction 1, or instruction 3. Picking up instruction 3
is a bad choice, because it is not possible to schedule
instruction 4 as the second instruction. Instruction 3 should
only be scheduled only if instruction 4 can be scheduled
next. We fix this problem by adding that - when picking
an instruction which is the source of a page-not-switching
edge, we pick up a pair of instructions to schedule; plus, we
give priority to pick up instructions that are not connected
through page-not-switching edges. This gives us more
opportunities to pick up instruction pairs with page-not-
switching edges.

5) Experiments and Results: We have implemented
this page-aware instruction rescheduling algorithm as a
compiler post-pass [23]. We compile our benchmarks with
GCC -O3 optimization, to ensure that the benchmarks are
compiled and scheduled for the maximum performance.
We disassemble the generated object file, discover the
basic blocks, and re-create the control flow graph (CFG),
and the data flow graph. We perform this modified list
scheduling heuristic on basic blocks. This fine grain in-
struction scheduling approach is applicable to any program.
The effectiveness of this approach could be increased
by performing our scheduling on hyperblocks, and/or su-
perblocks. We observed that our scheduling gains from
performing local reordering of load instructions. There is
not much increased opportunity to move load instructions
across basic blocks, because of tight data dependencies.

We modified the sim-outorder [22] simulator to count
the page switches for an application execution. Fig. 5 plots
the page switch count, after implementing our page-aware
instruction scheduling and operand re-ordering transfor-
mations normalized to the baseline page switch count.
On an average, our technique achieves 23% reduction in
the page switch count as indicated by the right-most bar
in Fig. 5. As a matter of fact, we observed an average
performance improvement of 4%. This reduction in page
switches directly translate into 23% power savings in the
Use-Last TLB. Note that this is over and above what Use-
Last TLB architecture achieves on its own.

B. Page-Switch Aware Array Interleaving

1) Technique Overview: Fig. 6 shows how array in-
terleaving can reduce the TLB page switching over data
accesses in the program. The code in Fig. 6(a) shows a
loop which accesses elements from two different arrays A
and B, which are mapped to different pages. Fig. 6(b),
shows that when this loop executes, there is a page switch
between consecutive memory accesses in the program.
Fig. 6(c) shows the transformed code after interleaving.

Fig. 5. Impact of Instruction Scheduling on Page Switch Count

Fig. 6. Array Interleaving through example: (a)Example loop (b)Array
allocation and access pattern (c)Loop block with interleaved arrays
(d)Array allocation and access pattern of interleaved array

Array interleaving places the elements of the two arrays
as alternate elements of the array AB. Fig. 6(d) shows
that there is no page-switching between consecutive access
to AB.

2) Which Arrays to Interleave ?: The problem of re-
ducing TLB page switching is localized to consecutive
memory accesses, therefore interleaving of arrays need
only be directed to decrease the page switching in the
innermost loop. Consider a nested loop of 3 levels, whose
iterators are i, j, and k, in which are there are references
to arrays A and B. Suppose in the innermost loop, the
reference functions are affine functions of the iterators,
i.e., the access function can be represented as a linear
combination of the iterators, fA = a0 + a1i + a2j + a3k,
and similarly fB = b0 + b1i + b2j + b3k.

We consider two arrays A and B as interleaving candi-
dates only if i)the access functions of the arrays are the
same. Thus, a0 = b0, a1 = b1, a2 = b2, a3 = b3 ensuring
minimized page switches after interleaving. ii)the arrays
of the same size. For example, we will interleave an array
of integers with another same size array of integers. It is
important to note that while it is possible to interleave
arrays with slightly different access patterns also, it results

7

in an overhead in terms of extra addressing instructions.
However, the innermost loop may contain several refer-
ences to the same array. Two arrays will be interleaving
candidates if the conditions are satisfied for any pair of
references to the arrays. We perform this analysis on all the
important loops of the application, and find pair of arrays,
which are interleaving candidates, we take the union of
interleaving candidates. Thus if arrays A and B are found
to be interleaving candidates from one loop, while B and
C are interleaving candidates from some other, then all the
three arrays will be interleaved.

3) Array Interleaving: The process of interleaving r
arrays of the same data type A1, A2, ...Ar is a three step
transformation. The first is to replace the individual array
declarations with a single array A of r times the size
of each array, and second is to fix the access functions
of all the array references. The access function fm =
Am[ami+bmj+cmk+dm] of the mth array is replaced by
fm = A[r× (ami+ bmj + cmk +dm)+ (m−1)] in three-
level nested loop. At the end of the day, it is important to
schedule the instructions that access the interleaved array
in the same pattern consecutively. This is done by moving
the result of the first instruction in a new temporary vari-
able, and replacing all its uses by the temporary variable.
Interleaving of r arrays of different data types is done by
declaring a new structure, say s, which contains an element
from each of the arrays. We then declare an array A of the
same size as all the previous arrays consisting of elements
of data type s. Then we replace the access function of
the mth array fm = Am[ami + bmj + cmk + dm] by
fm = A[ami + bmj + cmk + dm].m.

4) Experiments and Results: We translate the source
code into the FORAY format [24], which essentially
consists of just the loop structure and the array access
functions as affine functions of the loop iterators. We
analyze the code in this format, and, perform our page-
aware array interleaving transformations in this format, and
then convert it back to the source code. The application is
compiled again, and our instruction scheduling for page
switch minimization is applied to enhance the impact of
array interleaving.

Fig. 7 plots the page switch count after performing
array interleaving and instruction scheduling on all the
benchmarks. The plot thus shows that our page-aware array
interleaving is a very effective transformation, and reduces
the data-TLB page-swith count by an average of 35% (indi-
cated by the right-most bar) with an overall average of 11%
increase in performance. This performance improvement is
inherent to array interleaving, as it inherently increases the
spatial locality of data, leading to improved cache behavior.
In swim, two global arrays and 5 local arrays were accessed
together in the loop bodies. Interleaving was possible on
all the arrays, thereby forming two interleaved arrays (one
global, and other local). This transformation enhanced the

Fig. 7. Impact of Array Interleaving and Instruction Scheduling on Page
Switch Count

opportunities for instruction scheduling and therefore 70%
page switch reduction was observed. Since the TLB power
is directly proportional to the number of accesses, we can
expect a concomitant 35% reduction in TLB power due to
the combined impact of array interleaving and page switch-
aware scheduling.

C. Impact of Loop Unrolling

Loop unrolling is a loop transformation in which the
loop body is replicated a finite number of times, thereby
reducing the loop overhead instructions. It is important to
observe that loop unrolling by itself does not reduce TLB
page switching, but, it may increase the effectiveness of
instruction scheduling, by providing more opportunities to
schedule instructions and thereby reduce inter-instruction
page switching.

Unrolling a loop may reduce page switches if there is
atleast one instruction, such that if we schedule two copies
of the instruction belonging to different iterations when
scheduled consecutively, will not result in inter-instruction
page switching. In other words, loop unrolling can be
performed if ∃i ∈ I such that,min

{
PSO(undefined, i.d, i.s1)
PSO(undefined, i.d, i.s2)

if i.op is comm

PSO(undefined, i.d, i.s1) otherwise

= 0

1) Experiments and Results: We have implemented our
page-switch aware loop unrolling transformation also as
source code transformation. Fig. 8 plots the effect of loop
unrolling on the page switch count of various benchmark
applications. The normalized page-switch count for the
case when page-switch aware instruction scheduling and
array interleaving are performed is plotted as the dark bar

8

Fig. 8. Impact of Loop Unrolling on Page Switch Count

(to the left for each benchmark), and the lighter graphs
indicate the page-switch count for unrolling factors of 2, 4
and 8 times respectively. The right-most set of bars in Fig.
8 indicate the average values for the cases plotted. On an
average, for an unrolling factor of 8, we obtain a reduction
of 37% in the page switch count for the applications on
which page-aware loop unrolling was possible with 9%
performance improvement.

D. Comprehensive Page Switch Reduction

Finally we study the impact of all the three transfor-
mations together. The ordering of the transformations is
an interesting issue. Instruction scheduling and array in-
terleaving are the fundamental transformations that reduce
data TLB page switches. Loop unrolling will be most
effective when all the opportunities for page switch reduc-
tion achievable after re-scheduling, are exploited. Our page
switch-aware instruction scheduling is done at a more fine-
grained level, and therefore has to be performed only after
array interleaving and unrolling to maximize the effect.
We first perform Page-Switch Aware Array Interleaving
to group the memory allocation of varied arrays together
into one overlapped page, and then Loop Unrolling on the
instructions such that all the instructions capable of being
implemented without page-switch are executed together.
Our fine-grain instruction scheduling is then performed as
a post-pass.

1) Experiments and Results: The dark bars on the left
in Fig. 9 plot the percentage reduction in the data TLB
page switch count for each application. The reduction is
calculated as compared to the data TLB page switch count
when the application is compiled using GCC −O3 alone.
The rightmost dark bar shows that there is an average
39% data TLB page switch count reduction over all the
benchmarks. The light bars on the right in Fig. VI-D1
plot the reduction in runtime for all the applications. The

rightmost light bar shows that there is an average 6.4%
reduction in runtime. In conclusion, the effect of page
switch reduction techniques is additive, and the effect is
realized after each step of the Page Switch Reduction
algorithm.

Fig. 9. Page Switch Count and Runtime reduction by our Page-Switch
Reduction Algorithm

VII. PART II:INSTRUCTION-TLB POWER REDUCTION

A. Instruction TLB Power

The instructions of a program are predominantly a
sequence of words placed consecyutively in the instruction
memory. This inherently means that majority of the instruc-
tion cache accesses are to accesses within the same page
when the next subsequent instruction accessed at all times.
However, (i)when the loop block of a program extends
across a page boundary or (ii)when the called function and
the call-site, are each in different pages of the instruction
memory, the instruction control will cross page boundaries
and thus cause page switches. When successive accesses
to the instruction cache are to two different pages, the last
stored permission and tag data stored by the Use-Last [1]
latch cannot be used and thus cause switching of the
TLB register file structures and therefore leading to power
consumption. In this work, we develop a code placement
heuristic that places the various function blocks of the
program such that the above conditions which case page
switches are avoided. This page-aware code placement
heuristic proposed aims to achieve maximum reduction in
the number of instruciton TLB page switches and thereby
reduced power consumption by the i-TLB.

9

B. Mechanics of Code Placement by the GCC Compiler

When an application is compiled by the GCC1 compiler,
the placement of the various functions accessed in the
program is in the order of occurrence of the function in the
code. When multiple files are involved in one application,
the order of the files added in the compilation list for the
program is the order in which the functions in that file
are added into the binary for that application. It can be
noted here that the code placement is not optimized for
any requirement (in particular performance) and therefore
motivated us to analyze the impact of code placement
on the page locality of the instruction memory. This
also demonstrates that any change to the placement of
the code in an application does not directly affect the
performance of the compiler optimized application. The
Code Placement Problem is defined as the reallocation of
the different function blocks in a program such that the
conditions for page-switches (as described above), in the
instruction memory are avoided. It can be noted here that
any code placement optimization intended, is limited to
the granularity of the function block which in-turn helps in
achieving an efficient greedy heuristic to solve the problem.

C. Problem Formulation

A given program can be represnted in the form of
a DCFG as described in Fig. 11 where each func-
tion of a program is defined by a 5-tuple of the form
FP =< Id, Pos, Size, Calls, LP [] >. Here, LP []
is the list of loops within the function and repre-
sented by the 5-tuple loop tuple of the form LP =<
Id, Pos, Size, Cnt, FnCall[] >, where FnCall[] lists the
call-sites for each of the function calls from this function
and defined by the tuple FnCall =< FP.Id, Pos >. This
hierarchial representation of a program defines the various
components involved in the formation of the problem
and also facilitate in deriving a heuristic solution. At
the top-level, the program is defined by a list (FP []) of
tuples describing the list of functions in the program. The
optimized reallocation solution to the problem is given
by the page-offset values(FP.Pos) defined in the form of
affine constraints and integer tuple relations. The smallest
offset values for each function that satisfy these relations
are taken as the solutions to the optimal code placement
problem.

D. Page-Aware Code Placement Heuristic

The overall functioning of the heuristic for page-aware
code placement, is described in the form of a flowchart
in Fig. 10. The program to be analyzed and optimized

1Analysis in this work was performed using the GCC versions 2.7.2.3
and 3.4.6 only. Unless a release of the GCC compiler alters this func-
tionality, we assume this mechanism to be applicable to all previous and
current GCC compiler versions.

is first profiled by executing the application and deriving
the data required. The data gathered is then processed
and stored in the form of tuples datastructure(FP , LP
and FnCall arrays) as described above. The values for
loop iteration count (LP.Cnt), and inter function calls
(FP.Calls) are sorted and listed in the of decreasing
magnitude. At each time, the top of this sorted list is taken
and the greedy heuristic is processed. Based on whether the
maximum value item is a function pointer (FP) or a loop
pointer (LP), the corresponding decisions are made and
the overloaded function Fn Boundary() is called with
the respective function parameters accordingly. The idea
behind sorting both the loop count values and the function
call values as a single list and taking the top-most value,
is to ensure that the component(loop or function-call) that
dominates the page-switches of the program is given due
prominence in the optimization heuristic.

Fig. 10. Flowchart describing the Greedy Heuristic for page-aware code
placement.

Two basic distinctions are made with respect to the
component identified(loop pointer or function pointer). Let
us first consider the top-most component is a loop pointer
therefore indicating that the loop count is the highest
among all values sorted. In this case, the LP tuple values
are used to analyze the possible position of the loop
within a page and when found to fit within a page, the
loop positions are set in the form of affine relations with
respect to the page boundaries. These limits on the loop

10

position is then translated into equivalent limits on the
loop’s parent function considering the size of the function.
The boundaries derived for the position of the function,
within a page, thus gaurantees that the loop with the highest
loop count is always placed within a single page and
therefore gaurantee that LP.Cnt number of page switches
are removed. For the case when the loop pointer identified
contains a non-zero number of function calls within its loop
block, identified by the LP.FnCall values, another step
is performed in addition to the above process of deriving
limits. The list of functions called from call-sites within the
loop block are noted and the size of each of the function
is compared against the limits on the function position
(derived earlier). The largest function which satisfies this
relationship is updated with its corresponding tuple values
with the limits on its position in the page. This additional
step for function calls ensures that, any page-switches that
may arrise due to control switching within the loop block
is avoided. Since this loop block has been identified as that
of maximum value, we can assume here that a maximum
of LP.Cnt number of page switches are thwarted.

Let us now consider the top-most component is a func-
tion pointer indicating that a particular function is called
maximum number of times. In such a scenario, we can
assume that for every call to the function, notwithstanding
the components within the function, its sequential set of
instructions are executed for sure. If these set of sequential
instructions were such that they crossed a page boundary,
we would experience a page switch for every call to
this function. In order to avoid this, considering the size
of the function, the function can be gauranteed to be
placed within the same page through the use of function
position limits over a single page. This process this ensures
the removal of FP.Calls possible page switches in the
program. If for any top-most element of the list, none of
the above conditions, for possible optimizations, satisfy,
the element is deemed reallocatable and the next element
is chosen. Since at all times, we only take the top-most
element from the sorted list, and deduce a position limit
for the functions based on that value we call this a greedy
heuristic. It should also be noted here that none of the
already defined limits are redefined during the process and
therefore optimal page-switch reduction is achieved for the
instruction-TLB accesses.

E. Heuristic Demonstration Through Example
We use the dijkstra application (from the MiBench [17]

benchmark suite) as an example to demostrate the applica-
tion of our page-aware code placement heuristic described
above. Fig. 11 describes the data control flow graph
(DCFG) of the original dijkstra benchmark program. Each
oval in the figure represents a function and the dotted line
marks the process-line for that function. The loops in each
of the functions are labelled by rectangular boxes and the

Fig. 11. Original DCFG of dijkstra program with page demarcations.

Fig. 12. Optimized DCFG of dijkstra program with page demarcations.

nested loops are marked by overlapping rectangular boxes,
denoting the level of each loop. A function call is indicated
by the use of a solid arrow to another function, and the
weight on that arrow indicates the number of function calls
executed, throughout the operation of the program. The
page boundaries or the pages to which each function (or
a part of the function) resided in the memory is indicated
with the help of corrugated lines and labelled with the page
number.

From the DCFG in Fig. 11, it is evident that function

11

calls to dequeue and enqueue are the major contributors
to the page-switch count of the application. In addition, it
can be noted that the function dequeue is called from outer
loop Loop 2 of the dijkstra, and the enqueue function is
called from the inner loop Loop 3 of the dijkstra. Therefore,
in order to optimize the dijkstra application for reduced
page switches, the function were rearranged as in Fig.
12. Here, we observe that the code size of the application
has increased by 16 Bytes which was used as padding to
position the function calls and the loops optimally. The
functions were rearranged in the instruction memory such
that the basic block within loops Loop 2 and Loop 3 of
dijkstra were in one page. In addition, since each of these
loops involved function calls to dequeue and enqueue,
these functions were placed immediately below the dijkstra
function so that they exist in the same function. Since the
collective size of dequeue(184 Bytes), enqueue(312 Bytes)
and dijkstra(1408 Bytes) far exceeded the size of one page
(1024 Bytes), the dijkstra function was placed such that
the loops Loop 2 and Loop 3, the functions dequeue and
enqueue all are placed in the same page. Owing to this
code placement order, it can be observed in Fig. 12 that the
functions qcount and print path originally in the same page
as that of dijkstra are now located in different pages. The
justification for this tradeoff is the fact that the total number
of calls to enqueue and dequeue together is twice that of
qcount and print path combined. Through experiments we
have determined that this optimal code placement for the
dijkstra program achieves 52% reduced page-switches in
line with the justification for the tradeoff involved in the
code placement.

F. Experiments
We have implemented this page-aware code-placement

heuristic as a profile based compiler post-pass [23] opti-
mization technique. We compile the benchmark first with
GCC -O2 optimization, to ensure that the benchmarks are
compiled and scheduled for the maximum performance.
We modified the sim-outorder [22] simulator to count the
iTLB-page switches for an application execution. The indi-
vidual function calls, and loop counts of the benchmark are
extracted through instrumented profiling of the application
using the modified sim-outorder simulator. We dissasemble
the generated object file, discover the basic blocks, function
sizes, loop positions, loop sizes and formulate the input
data for the optimization heuristic. The DCFG is formed
for the entire application, and the heuristic is applied as
in Fig. 10. In order to introduce nop stubs into the code
for appropriate positioning of the functions and the loops,
no operation functions are formed of 8 bytes each and
duplicated accordingly.

The optimized code is then built into the binary, and
executed using the modified sim-outorder simulator to
extract the iTLB-page switch count for the application.

Fig. 13. Impact of Code Placement on Page Switch Count.

In all the benchmarks experimented, only code-placement
was performed and no data-TLB page-switch reduction
techniques were applied. Fig. 13 plots the page-switch
count, after implementing our page-aware code placement
heuristic normalzied to the baseline(un optimized code)
page-switch count for each benchmark. The benchmarks
patricia, sha and adpcm show significant reduction in the
instruction-TLB page-switch count when compared to the
other benchmarks, owing to the characterisitics of these
applications. patricia and adpcm are applications which
contain large functions, with high number of function calls
to smaller functions, and therefore caused high number
of page-switches. The heuristic was able to recognize
this character of the program, and place the highly used
functions such that they were present in the same page
as that of the calling instruction from the callee function.
Such a page-aware placement of the functions led to the
significant page-switch reduction. The sha benchmark on
the other hand was a large benchmark with many large
functions with small number of inter-function calls, but
the presence of loops within the functions had a high
loop count and were located across page boundaries. Such
loops(with maximum-iteration count) were recognized by
the heuristic and were placed such that none of these
loops were across page boundaries therefore reducing the
page-switch count significantly. In all the benchmarks, we
observe less than 1% variation in performance and an
average of 76% reduction in the page switch count of the
applications. This translates into an power saving of 76%
over and above the reduction achieved through the Use-
Last TLB architecture implementation alone.

VIII. SUMMARY

The TLB performs virtual to physical address translation
and determines page access permissions. Most mordern
processors accomodate virtual addressing and therefore the

12

TLB is part of the critical path in every access to the
cache, and since the L1 cache is divided into instruction
cache and data cache, and therefore there exist two TLB
structures, one for the instruciton (iTLB) and another for
the data (dTLB). These TLB structures thus form one of
the major hot-spots of the processor, and therefore energy
consumption of these structures is a major concern in high
general purpose as well as high-performance processors.
The Use-Last TLB architecture proposed in [1] reduces
the TLB power consumption, if the same page is accessed
successively. This approach was ineffective for data TLB,
because data accesses do not exhibit high locality as
compared to instructions.

In this paper, we have introduced a novel, page-aware
instruction scheduling algorithm, and proposed heuris-
tics to decide when to perform array interleaving, and
loop unrolling to reduce the TLB page switching. Our
experiments on benchmarks from MiBench, Multimedia,
DSPStone and BDTI suites show a 39% reduction in
the TLB page switches with a negligible increase in
performance, over what is possible by the GCC compiler.
We have enhanced the application of the Use-Last TLB
architecture for instruction cache through our page-aware
code placement technique. Through our page-aware code
placement heuristic, we achieve 76% reduction in the page-
switch count of applications with less than 1% variation in
performance over a set of control intensive applications.
It is to be noted here that the energy reduction achieved
through our code tranformations is over and above the
energy reduction through the implementation of the Use-
Last TLB architecture. Our future work in this direction
involves further exploration of compiler directed code
transformations for energy reduction in the instruction-
TLB architecture.

REFERENCES

[1] J. R.Haigh, M. Wilkerson, J. Miller, T. Beatty, S. Strazdus, and
L. Clark, “A low-power 2.5 ghz 90 nm level 1 cache and memory
management unit,” in IEEE Journal of Solid State Circuits. IEEE
Press, 2004, pp. 1190–1199.

[2] M. Ekman, P. Stenstrm, and F. Dahlgren, “Tlb and snoop energy-
reduction using virtual caches in low-power chip-multiprocessors,”
in ISLPED ’02. New York, NY, USA: ACM Press, 2002, pp.
243–246.

[3] I. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju, and
G. Chen, “Optimizing instruction tlb energy using software and
hardware techniques,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 10, no. 2, pp. 229–257, 2005.

[4] X. Zhou and P. Petrov, “Low-power cache organization through se-
lective tag translation for embedded processors with virtual memory
support,” in GLSVLSI ’06. New York, NY, USA: ACM Press, 2004,
pp. 398–403.

[5] P. Petrov, D. Tracy, and A. Orailoglu, “Energy-effcient physically
tagged caches for embedded processors with virtual memory,” in
DAC ’05. New York, NY, USA: ACM Press, 2005, pp. 17–22.

[6] L. T. Clark, B. Choi, and M. Wilkerson, “Reducing translation
lookaside buffer active power,” in ISLPED ’03. New York, NY,
USA: ACM Press, 2003, pp. 10–13.

[7] S. Manne, A. Klauser, D. Grunwald, and F. Somenzi, “Low power
tlb design for high performance microprocessors,” 1997. [Online].
Available: citeseer.ist.psu.edu/manne97low.html

[8] J.-H. Lee, G.-H. Park, S.-B. Park, and S.-D. Kim, “A selective filter-
bank tlb system,” in ISLPED ’03. New York, NY, USA: ACM
Press, 2003, pp. 312–317.

[9] J.-H. Choi, J.-H. Lee, S.-W. Jeong, S.-D. Kim, and C. Weems,
“A low power tlb structure for embedded systems,” IEEE Comput.
Archit. Lett., vol. 1, no. 1, p. 3, 2006.

[10] Y.-J. Chang, “An ultra low-power tlb design,” in DATE ’06:
Proceedings of the conference on Design, automation and test in
Europe. 3001 Leuven, Belgium, Belgium: European Design and
Automation Association, 2006, pp. 1122–1127.

[11] I. Kadayif, P. Nath, M. Kandemir, and A. Sivasubramaniam,
“Compiler-directed physical address generation for reducing dtlb
power,” in ISPASS ’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 161–168.

[12] V. Delaluz, M. Kandemir, N. Vijaykrishnan, M. Irwin, A. Sivasub-
ramaniam, and I. Kolcu, “Compiler-directed array interleaving for
reducing energy in multi-bank memories,” in ASP-DAC ’02, 2002,
pp. 288–293.

[13] A. Parikh, S. Kim, M. Kandemir, N. Vijaykrishnan, and M. Irwin,
“Instruction scheduling for low power,” in VLSI-SP ’04, 2004, pp.
129–149.

[14] A. Chiyonobu and T. Sato, “Energy-efficient instruction scheduling
utilizing cache miss information,” in MEDEA ’05: Proceedings of
the 2005 workshop on MEmory performance. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 65–70.

[15] M. Kandemir, I. Kadayif, and G. Chen, “Compiler-directed code
restructuring for reducing data tlb energy,” in CODES+ISSS ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 98–103.

[16] Intel Corporation, “Intel XScalerTechnology Overview.” [Online].
Available: intel.com/design/intelxscale

[17] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in WWC ’01: Proceedings of the
Workload Characterization, 2001. WWC-4. 2001 IEEE International
Workshop on. Washington, DC, USA: IEEE Computer Society,
2001, pp. 3–14.

[18] Hari Balakrishnan and Rahul Garg, “Multimedia benchmarks:
A performance comparison of multimedia programs on different
architectures.” [Online]. Available: citeseer.ist.psu.edu/233784.html

[19] V. Zivojnovic, J. Velarde, C. Schlager, and H. Meyr, “Dspstone: A
dsp-oriented benchmarking methodology,” in Proceedings of Signal
Processing Applications and Technology, Dallas, 1994.

[20] J. L. Henning, “Spec cpu2000: Measuring cpu performance in the
new millennium,” Computer, vol. 33, no. 7, pp. 28–35, 2000.

[21] BDTI Suite: Berkeley Design Technology Inc,
“The bdti benchmark suites.” [Online]. Available:
bdti.com/products/benchmark overview.html

[22] T. Austin, “SimpleScalar LLC.”
[23] Aviral Shrivastava and Eugene Earlie and Nikil D. Dutt and Alexan-

dru Nicolau, “Operation tables for scheduling in the presence of
incomplete bypassing.” in CODES+ISSS, 2004, pp. 194–199.

[24] Ilya Issenin and Nikil Dutt, “Foray-gen: Automatic generation of
affine functions for memory optimizations,” in DATE ’05: Proceed-
ings of the conference on Design, Automation and Test in Europe.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 808–813.

