EXPLOITING RESIDUE NUMBER SY:¢
FOR POWER-EFFICIENT
DIGITAL SIGNAL PROCESSING
IN EMBEDDED PROCESSORS

Rooju Choksht, Krzysztof S. Berezowski*3, Aviral Shrivastava?, Stanis!aw J. Piestrak*

Microsoft Corporation, Redmond, WA, USA
°CSE Dept, Arizona State University, Tempe, AZ, USA
STIMA Laboratory, 38031 Grenoble, France
4LICM, University of Metz, 57070 Metz, France

£

ACTIONS

ARIZONA STATE

mUMVER
cYIL

FOR THE IMPATIENT

Standard Embedded Processor (ARM)
+
Residue Number System (2"+1, 2%, 2"-1)
+
Compiler-aware Architectural Design
(exposition of RNS advantages and overheads)
+
Compilation Techniques
(appropriate instruction selection and scheduling)

Significant improvements in power-efficiency
of DSP-intensive embedded applications

2

MOTIVATION

@ digital signal processing (DSP) dominates workload
of portable embedded processors (communicat. & multimedia)
@ portable devices quickly become amazingly feature-rich
@ power efficiency Is insufficient - battery demands determine
volume, shape factor, weight, charging frequency, lifetime...

* Energy demand of handset applications is growing

* Device performance rising Handset Demand

personal experience - Complexity sing
: * Functionality risin
iPod Touch (fully charged) o
allows for ~45 mins

o
_ 2
of a Skype conversation < B
attery
what about a video call? Ll N
Battery technology falling behind
and the gap increases...

Source: Battery Technology & Power Management Conference, Vancouver, 18 August,
2005. Stuart Robinson, Strategy Analytics, Ltd.

closing the gap requires breaking the current trends

RNS? WHY BOTHER?

non-positional number system where a value
X 1]0,M)
IS represented as a set of residues
(el =g
modulo respective co-prime integers (moduli)
P={P4,...P}

asaresult!” {+,#,$} on residuesare inherently parallel:

XY = {Ix1! yilp, v IX1 ! Wilp, }

where X = {X1,...X1} Y = {Xq1,...., X}

4

THERE IS NO FREE LUNCH

@ no support for division nor magnitude comparison
@ interaction with 20s complement system requires conversions:
¢ forward (computation of residue)

¢ reverse - Chinese Remainder Theorem (CRT):
I

Mol g
X = X1+ Pramy(xa! x1)+ mi(P)(Xisz ! Xi)
=7 | =2 .Q}:z P,
where
\m1P1|P2P3___PI | 1,...,\m|! 1P1P>...P 1|P| 1]

hardware (under some assumptions):
both forward and reverse ! multi-operand modulo addition

5

QUICK EXAMPLE

X:13,Y:22 P1:8,P2:9,P3:7
X1 = 13‘8 =5, 5= 13‘9 =l e = ‘13‘7 =0
Vi=1223=6, Yy»=[224=4, y3=1]22, =1

X1+ VY1 = 5+68: Xléy1:‘5é68:6
Xo+ Y2 = [4+4|g = Xpay, = [4ad|, =7
X3+ Y3 = 6+17:O Xgéy3:‘6é.17:6

X=2z1+Pramy(zz! z3) + maPa(z3! z5)|p p,
m; =8, mMmy,=4
X+Y=3+8aBas+4a94(! 8)|,;=3+8 a| 248,, =35
XaYy =6+8 aBal+4a9a(! 1)|,;,=6+8 a| 28;; = 286

IMPACT ON HARDWARE (+

carry propagation Is either power-efficient but slow
A, B,

A4 B4 A3 BB A2 BZ 1
C | H >1< | C.
out | CSW CZW Cl | in
S, S, S

2 Sl

or fast but hardware intensive
(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)

EE NN R EEEEEEEEN

15:14| 14:13 10:9 9:8 8:7 7:6 6:5 5:4 4:3 3:2 2:1 1:0
EEEEEEEEEEENN
15:12| 14:11| 13:10| 12:9 : : 9:6 8:5 74 6:3 5:2 4:1 3:0 2:0

8/107] 96| 85] 74| €3] 52| 41] 30| 20]
] |

15:8| 14:7| 13:6| 12:5| 11:4| 10:3 92% 6:0 5.0 4:0

.

15:014:013:012:011:010:0 9.0 8.0 7.0 6.0 50 4.0 3:0 2.0 1:0 0:0

RNS partitions the DP -reduces propagation chain width

IMPACT ON HARDWARE (*

Sum of squares Is less than square of sum!

number of partial products:
@ 32x32 Integer: 1024 PP to reduce
@4095,4096,4097RNS 121+66+144 =331 PP to reduce !

both size AND depth of the carry-save addition (CSA) reduces

HOW TO REAP THE BENEFI

@ In custom logic 1t is easy to dilute the overheads in benefits

a lot of efficient RNS computations happens before conversion
. A 5 l COEFF (rns) l ‘ COEFF (rns) ' | COEFF (rns) ' 8 . -
LU X 5 RNS RNS RNS Z A
nd it
() fet = ||} p——{ PARALLEL ==t PARALLEL pmeee ,,, ==t PARALLEL et % % o 2
0 T2 MACS MACS MACS 0 m
oY IL O om Py
O Z
Qin a programmable processor it is easy to make |
the overheads overshade the benefits...
| = 0O
i m 5 23] res [2R] |
<)
A INTEGER L9 0 LS E| PARALLEL |7 =k
Q - Q Z 2 MULTIPLIERS| © &) -
o Py o LL 8 CZD al Py

but the compiler manages the pipeline , so let it know!

9

SYNERGISTIC ARCHITECTL

Y

INTEGER

MULTIPLIER I

INTEGER
ADDER

FORWARD
CONVERSION

REVERSE
CONVERSION

RNS

ADDER

PARALLEL et

L
L I::
D:E e—
Lo
)
=S e Bl R
T U)
0
L >
—r *
>
E
5 -
n o
ol T T™
o5
D:(D C—
!é'! —>
—r

KEEE'

RNS

MULTIPLIER

new Instructions:
eFC

eRC

e RADD

¢ RMULT

- \WB COM

RNS trade-offs:
@ promoted to ISA !

PARALLEL el

@ exposed to compiler

| — e ——

10

HOW TO DESIGN HARDWAI

@ some odd numbers P (moduli) enjoy periodicity property , I.e.
the series of residues of the *2'* series is periodic

e for certain moduli (certain odd numbers), it happens so
that these series of residues are consecutive powers of 2
(at least their absolute values)

¢ particularly, the series '2'* when Pis 2 "+1 or 2-1
IS periodic with respectto n:
w2 22 2222 Jaad 2"] 2" [aad 27z HETE
20, | 220|222 [aad 2" 20[4aad 201 20| aad
2, |22 | B [aag 2t |12 [aaq 12T 20| 444

promotes the usage of n-bit wide end-around-carry CSA
for the implementation of most of the RNS hardware

[S

END-AROUND CARRY CS£

l3 Z3Y3Xg b Zo¥YoXy 4 Z9Y1X Yy ZgYgXg

FA FA FA FA
FA FA FA FA
C3 S3 C2 52 Cl Sl CO SO
o
[st e
Cigees!. 2bh=- 28! 2' for neg. weights invert & correct!

1=0 1=0 1=0

52

PERIODICITY IMPLICATION.

essentially EAC-CSA produces a two vectors C and S such that
to compute a residue in the channel we need to compute

r=12C + S|
reducing 2C+S to r is costly - takes 2-operand modulo adders
(usually some parallel-prefix adder with EAC embedded)

obviously, by definition, 2C+Ss congruent to r.
we can compute on congruences as easily as on residues
and due to EACIn periodic moduli DP-width never grows !

use pair (S,C) for internal representation
work with congruences using EAC-CSA trees

o\

IMPLICATIONS TO HARDWAI

¢ adders/forward converters (FC) are just standard CSA-EAC
¢ 2 layers for two-operand ADD or single forward converter
¢4 layers for three-operand ADD or double forward converter

depth of EAC-CSA Is iIndependent of DP-path width

¢ iIn multiplier and reverse converter initial reduction Is done
but again (in the multiplier) we can work with congruences

X, (S,C) X,(S,C) X4(S,C)
L] L L X,(S,C) X,(S,C) X(S,C) X,S,C) 1(s C) xz(s C)

1 +]35768 | |+l515 |+
————
I QO
| CSAl
CSAl

— T T CSA (2k) CSA (2n 1) CSA (2“+1)
T,

B e— Y(S C) Y(S C) Y(S C)

I x

COMPILATION

discover subgraphs of Data-Flow Graph (DFG)
that can be profitably mapped to RNS operators

RNS Eligible Nodes ®\ /®\ /®\ /®
r <R /CD\ @
RNS Eligible Subgraphs (RES)

contain only RNS Eligible Nodes

Maximal RNS Eligible Subgraph (I\/IFSS)\A //®

RES that is not properly contained @
in any other RES @RES that is not Maximal
15

FINDING MRES

starting from any RNS Eligible Nodeexpand on undirected graph
through breadth-first search till no more nodes can be included

If mapping MRES to RNS G.G G G G
turns out profitable - map it °'° O’G
o o

Profit measure (cycles):

¢?2 FC- an overhead of 1c.

@1 RC- an overhead of 2c.

@ 3-operand RADD- profit of 1c.

¢ 2-operand RMUL- profit of 1c. G

16

SCHEDULING FC IN LOOP

result rns = a r*x r + b_r*y_
RC result_rns,result
STORE result

result rns = a_ r*x_ r + b_r*y_
RC result_rns,result
STORE result

a = COMPUTE_a() a = COMPUTE_a() a = COMPUTE_a()
b = COMPUTE_b() b= COMPUTE_b() b = COMPUTE_bh()
for i=0 to n do: for i=0 to n do: a_r,a
r LOAD X[{i] gasic Block T[FCa_r, a[—~~------==== =] FC b_r,b [
' LOAD y[i] - W EChH no | Basic Block * , fori=0to ndo: g.cic Block
. result = a*x[i]+b*y[i], ! LOAD x[i] : LOAD x[i]
» STORE result : ' LOAD yJi] : LOAD y[i]
S — "' FC x_rx]i] : FC x_r,x[i]
¢ FCy_ryli] : FC y_ryli]
: s
1 1
1 1
1 1
1 1

E - I E N NN I N = O = E .

Q
N—r
(@)
N—r
1
1
1
1
1
1
1
1
1
1
1
1
N
1
1
1
1
1
1
1
1
1
1
1
1

without scheduling with scheduling

Move FC out of the loop only If:
Q@ register Is not being written in the loop
Q@ register Is being written only in the same MRES as the FC

17

ADDITION PAIRING

fast RNS hardware allowed us to implement 3-operand addition

At a4 i i !F\f ?

FE

¥

IN general case ternary tree of additions should be built
for a single set of RNS resources linearizing is enough

18

EXPERIMENTAL SETUP

¢ hardware components were designed in RTL Verilog
synthesized using Cadence RC Compiler and OSU 0.18um lib
¢ SimpleScalar ARM was extended to support RNS instructions
RNS values are stored In floating point registers
@ GCC was extended to implement the ISA extension
and the compilation techniques
¢ a collection of DSP and image processing kernels were run:
¢ without extension
@ with extension - hand-optimized code
@ with extension - basic technique (instruction selection only)
@ with extension - extended technique (selection & scheduling)
¢ performance (no. cycles) and power numbers were collected

19

RESULTS (PERFORMANCI

Effectiveness of Compilation mIHand Optimized

60 Technique ~ mBasic Algorithm
Hm Improved Algorithm

50

N
o

N
o

% Improvement
w
o

=
o

—
-

!‘

q-
q

o

Q © © S 2 = o 85 L

— ~—~ 0 C QO > —I bl
e S O O O

£ T T O a i = Z

G O E N — =0

> 0p)]

Instruction selection: +12% performance on average
selection & scheduling: +20% performance on average
manual optimizations: +30% performance on average

20

RESULTS (HAND-OPT)

O Performance

Benchmark Evaluation = Power

60

)
o

N
o

% Improvement
W
o

20

10

0
g © © o g 2 = = 483 8
N — © e Q o -1 80 S
5 X 0n = T DT o)
) | S
< - O £ Q — =0 <
S %)

hand-optimized code:

+30% average performance
-2 /% power on average

Cee—— 21

R

DESIGN SPACE EXPLORAT

DCT - Power vs Performance *ARM WORNS
AA RM with RN

3300

3100 s \1A,1M, 1A,2M
n 2900 A\
5 | trend line
gZ?OO |

G 55000 O\

% 2300 \ZA\W‘
S 21000 :

x :
19000 T Al
e MAM
1700 4A,4M
1500
20 40 60 80 10C

Power [mW]

27

CONCLUSIONS

¢ promoting RNS idiosyncrasies to the ISA level
IS an efficient way to use RNS in the programmable CPU
| effectively creates custom RNS pipeline using software
¢ Compliler was able to extract as much as
@ 21% improvement in performance (30% hand-opt), and
¢ 52% improvement in power dissipation (57% hand-opt)
¢ if you plan to add second resource set to your embedded CPU
consider RNS over reqular Integer set.
¢ if you plan to use only single resource set...
think again ! add RNS.saves power and boosts performance

Interestingly, unlike in application-specific hardware
In a CPU its forward conversions that define the bottleneck

& 23

FUTURE WORK

@ more aggressive ISA optimizations:

¢ Integrating loads/stores and conversions

¢ support for arithmetic shifts

¢ sign detection for magnitude comparison

¢ moving conversions into memory interface?
¢ compilation techniques for super- and hyper-block level
@ code annotation for direct interaction

between programmer and compiler

24

EXPLOITING RESIDUE NUMBER SY:¢
FOR POWER-EFFICIENT
DIGITAL SIGNAL PROCESSING
IN EMBEDDED PROCESSORS

Thank you for your attention!

Rooju Choksht, Krzysztof S. Berezowski*3, Aviral Shrivastava?, Stanis!aw J. Piestrak*

Microsoft Corporation, Redmond, WA, USA
°CSE Dept, Arizona State University, Tempe, AZ, USA
STIMA Laboratory, 38031 Grenoble, France
4LICM, University of Metz, 57070 Metz, France

£

ACTIONS

ARIZONA STATE

mUMVER
cYIL

