
EXPLOITING RESIDUE NUMBER SYSTEM
FOR POWER-EFFICIENT

DIGITAL SIGNAL PROCESSING
IN EMBEDDED PROCESSORS

Rooju Chokshi1, Krzysztof S. Berezowski2,3, Aviral Shrivastava2, Stanis!aw J. Piestrak4

1Microsoft Corporation, Redmond, WA, USA
2CSE Dept, Arizona State University, Tempe, AZ, USA

3TIMA Laboratory, 38031 Grenoble, France
4LICM, University of Metz, 57070 Metz, France

CCMMLL

RESIDUE NUMBER
SYSTEM ENHANCEMENTS

FOR PROGRAMMABLE
PROCESSORS

Arizona State University

Rooju Chokshi

7th November, 2008
Compiler-Microarchitecture Lab

Computer Science and Engineering

1

FOR THE IMPATIENT
Standard Embedded Processor (ARM)

+
Residue Number System (2n+1, 2k, 2n-1)

+
Compiler-aware Architectural Design

(exposition of RNS advantages and overheads)
+

Compilation Techniques
(appropriate instruction selection and scheduling)

=
Significant improvements in power-efficiency

of DSP-intensive embedded applications

2

MOTIVATION
digital signal processing (DSP) dominates workload
of portable embedded processors (communicat. & multimedia)
portable devices quickly become amazingly feature-rich
power efficiency is insufficient - battery demands determine
volume, shape factor, weight, charging frequency, lifetime...

mirasolª Display Value Proposition
White Paper

Page 4

This energy dilemma would be mitigated if battery capacity increases by a
commensurate amount between now and 2015, but that will not likely be the
case as there is a growing energy gap between greatly increasing energy
demand and moderately increasing battery capacity (Figure 3). MotorolaÕs
former CTO, Padmasree Warrior, stressed in 2006 that developing
components, software, and applications that consume less power Òwill be just
as important as improving battery life technologyÓ over the coming years.
QualcommÕs mirasol display will be a key component applied to the solution
of this energy dilemma.

Figure 3: The Òenergy gapÓ not closed by improved battery capacity
must be closed with components boasting improved efficiency

Energy Metrics

Energy metrics are a key component in understanding a productÕs expected
usefulness to consumers. Currently, there are two commonly published
energy metrics for cell phones: Talk Time and Standby Time. These metrics
are relics of the non-convergent handset era and are measured under non-
display-watching conditions (these devices are no longer used only for
talking). A specific handset with a power hungry display will, for example,
yield the same Talk and Standby Times as an otherwise identical handset with
a low power display technology. The false implication being that usage time

Source: Battery Technology & Power Management Conference, Vancouver, 18 August,
2005. Stuart Robinson, Strategy Analytics, Ltd.

personal experience :
iPod Touch (fully charged)
allows for ~45 mins
of a Skype conversation
what about a video call?
and the gap increases...

closing the gap requires breaking the current trends

as a result on residues are inherently parallel:

RNS? WHY BOTHER?
non-positional number system where a value

is represented as a set of residues

modulo respective co-prime integers (moduli)

X ! [0, M)

{ x1, ..., xl : ! l
i =1 xi = |X |Pi }

P = { P1, ..., Pl }

! " {+ , # , $ }

X = { x1, ..., xl } Y = { x1, ..., xl }

X ! Y = {| x1 ! y1|P1
, ..., |xl ! yl |Pl

}

where

4

THERE IS NO FREE LUNCH...
no support for division nor magnitude comparison
interaction with 2Õs complement system requires conversions:

forward (computation of residue)
reverse - Chinese Remainder Theorem (CRT):

X = x1 + P1 á

!
!
!
!
!
!
m1(x2 ! x1) +

l ! 1"

i =2

mi (
i#

j =2

Pj)(xi +1 ! xi)

!
!
!
!
!
!Q l

j =2 Pj

|m1P1|P2 P3 ...P l
! 1, . . . , |ml ! 1P1P2...Pl ! 1|Pl

! 1
where

hardware (under some assumptions):
both forward and reverse ! multi-operand modulo addition

5

QUICK EXAMPLE
X = 13, Y = 22 P1 = 8 , P2 = 9 , P3 = 7

x1 = |13|8 = 5 , x2 = |13|9 = 4 , x3 = |13|7 = 6

y1 = |22|8 = 6 , y2 = |22|9 = 4 , y3 = |22|7 = 1

X = z1 + P1 á |m1(z2 ! z1) + m2P2(z3 ! z2)|P2 P3

m1 = 8 , m2 = 4

x1 + y1 = |5 + 6|8 = 3

x2 + y2 = |4 + 4|9 = 8

x3 + y3 = |6 + 1|7 = 0

x1 áy1 = |5 á6|8 = 6

x2 áy2 = |4 á4|9 = 7

x3 áy3 = |6 á1|7 = 6

X + Y = 3 + 8 á |8 á5 + 4 á9 á(! 8)|63 = 3 + 8 á |! 248|63 = 35

X áY = 6 + 8 á |8 á1 + 4 á9 á(! 1)|63 = 6 + 8 á |! 28|63 = 286

IMPACT ON HARDWARE (+)

11: Adders Slide 13CMOS VLSI Design

Carry -Ripple Adder
! Simplest design: cascade full adders

Ð Critical path goes from Cin to Cout
Ð Design full adder to have fast carry delay

CinCout

B1A1B2A2B3A3B4A4

S1S2S3S4

C1C2C3

11: Adders Slide 36CMOS VLSI Design

Kogge -Stone

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

carry propagation is either power-efficient but slow ...

or fast but hardware intensive .

RNS partitions the DP - reduces propagation chain width

IMPACT ON HARDWARE (*)

12: Datapath Functional Units Slide 37CMOS VLSI Design

General Form
! Multiplicand: Y = (yM-1, yM-2, É, y 1, y0)
! Multiplier: X = (xN-1, xN-2, É, x 1, x0)

! Product:
1 1 1 1

0 0 0 0

2 2 2
M N N M

j i i j
j i i j

j i i j

P y x x y
! ! ! !

+

= = = =

" #" #
= =$ %$ %

& '& '
((((

x0y5 x0y4 x0y3 x0y2 x0y1 x0y0

y5 y4 y3 y2 y1 y0

x5 x4 x3 x2 x1 x0

x1y5 x1y4 x1y3 x1y2 x1y1 x1y0

x2y5 x2y4 x2y3 x2y2 x2y1 x2y0

x3y5 x3y4 x3y3 x3y2 x3y1 x3y0

x4y5 x4y4 x4y3 x4y2 x4y1 x4y0

x5y5 x5y4 x5y3 x5y2 x5y1 x5y0

p0p1p2p3p4p5p6p7p8p9p10p11

multiplier

multiplicand

partial
products

product

Sum of squares is less than square of sum!

number of partial products:
32x32 integer: 1024 PP to reduce
4095,4096,4097 RNS: 121+66+144 = 331 PP to reduce !

both size AND depth of the carry-save addition (CSA) reduces

HOW TO REAP THE BENEFITS?

in a programmable processor it is easy to make
the overheads overshade the benefits...

in custom logic it is easy to dilute the overheads in benefits
a lot of efficient RNS computations happens before conversion

but the compiler manages the pipeline , so let it know!

R
E

G
IS

T
E

R
R

E
G

IS
T

E
R

R
E

G
IS

T
E

R

INTEGER
MULTIPLIER

R
E

G
IS

T
E

R

RNS
PARALLEL

MULTIPLIERS

F
O

R
W

A
R

D
C

O
N

V
E

R
S

IO
N R

E
V

E
R

S
E

C
O

N
V

E
R

S
IO

N
F

O
R

W
A

R
D

C
O

N
V

E
R

S
IO

N

RNS
PARALLEL

MACS

RNS
PARALLEL

MACS

RNS
PARALLEL

MACS
...

R
E

V
E

R
S

E
C

O
N

V
E

R
S

IO
NR

E
G

IS
T

E
R

R
E

G
IS

T
E

R

COEFF (rns) COEFF (rns) COEFF (rns)

9

SYNERGISTIC ARCHITECTURE
new instructions:

FC
RC
RADD
RMULT

RNS trade-offs:
promoted to ISA !
exposed to compiler

IDIF

INTEGER
MULTIPLIER

INTEGER
ADDER

RNS
PARALLEL

ADDER

RNS
PARALLEL

MULTIPLIER

FORWARD
CONVERSION

REVERSE
CONVERSION

IN
T

E
G

E
R

R
E

G
IS

T
E

R
 F

IL
E

R
N

S
/F

P
R

E
G

IS
T

E
R

 F
IL

E

WB COM

...
...

10

HOW TO DESIGN HARDWARE
some odd numbers P (moduli) enjoy periodicity property , i.e.
the series of residues of the series is periodic
for certain moduli (certain odd numbers), it happens so
that these series of residues are consecutive powers of 2
(at least their absolute values)
particularly, the series when P is 2 n+1 or 2n-1
is periodic with respect to n:

11

!
!2i

!
!
P

!
!2i

!
!
P

2i 20 21 22 23 á á á 2n ! 1 2n á á á 22n ! 1 22n á á á
!
!2i

!
!
2n ! 1 20 21 22 23 á á á 2n ! 1 20 á á á 2n ! 1 20 á á á!

!2i
!
!
2n +1 20 21 22 23 á á á 2n ! 1 ! 20 á á á ! 2n ! 1 20 á á á

promotes the usage of n-bit wide end-around-carry CSA
for the implementation of most of the RNS hardware

12

END-AROUND CARRY CSA
x0y0z0x1y1z1x2y2z2x3y3z3

FAFAFAFA

FAFAFAFA

t0t1t2t3

s0s1s2s3 c0c1c2c3
c0

!
k!

i =0

2i bi =
k!

i =0

2i øbi !
k!

i =0

2isince: for neg. weights invert & correct!

PERIODICITY IMPLICATIONS
essentially EAC-CSA produces a two vectors C and S such that
to compute a residue in the channel we need to compute

r = |2C + S|P

obviously, by definition, 2C+S is congruent to r.
we can compute on congruences as easily as on residues
and due to EAC in periodic moduli DP-width never grows !

reducing 2C+S to r is costly - takes 2-operand modulo adders
(usually some parallel-prefix adder with EAC embedded)

 use pair (S,C) for internal representation
work with congruences using EAC-CSA trees

IMPLICATIONS TO HARDWARE

X1(S,C) X2(S,C) X1(S,C) X2(S,C) X1(S,C) X2(S,C)

Y(S,C) Y(S,C) Y(S,C)

+ +

PPG

CSA (2n-1)

+ +

PPG

CSA (2n+1)

+ +

PPG

CSA (2k)

X

X1(S,C)

|+|32768

X3(S,C)

|+|511|+|513

X2(S,C)

CSA1

CSA1

|+|2^18-1

adders/forward converters (FC) are just standard CSA-EAC
2 layers for two-operand ADD or single forward converter
4 layers for three-operand ADD or double forward converter

depth of EAC-CSA is independent of DP-path width

in multiplier and reverse converter initial reduction is done
but again (in the multiplier) we can work with congruences

COMPILATION
discover subgraphs of Data-Flow Graph (DFG)

that can be profitably mapped to RNS operators

RNS Eligible Nodes
(+, -, *)

RNS Eligible Subgraphs (RES)
contain only RNS Eligible Nodes

Maximal RNS Eligible Subgraph (MRES)
RES that is not properly contained
in any other RES

L L L L

! + L L+

+ >>

!

! !

+

<<

L

RES that is not Maximal

15

FINDING MRES
starting from any RNS Eligible Node expand on undirected graph
through breadth-first search till no more nodes can be included

Profit measure (cycles):
2 FC - an overhead of 1c.
1 RC - an overhead of 2c.
3-operand RADD - profit of 1c.
2-operand RMUL - profit of 1c.

L L L L

! + L L+

+ >>

!

! !

+

<<

L

If mapping MRES to RNS
turns out profitable - map it

16

SCHEDULING FC IN LOOPS
a = COMPUTE_a()
b = COMPUTE_b()
fo r i=0 to n do :
 LOAD x[i]
 LOAD y[i]
 resu l t = a*x [i]+b*y [i]
 STORE resu l t

a = COMPUTE_a()
b = COMPUTE_b()
fo r i=0 to n do :
 FC a_r, a
 FC b_r,b
 LOAD x[i]
 LOAD y[i]
 FC x_r,x[i]
 FC y_r,y[i]
 resu l t_ rns = a_r*x_r + b_r*y_r
 RC resu l t_ rns , resu l t
 STORE resu l t

Basic Block
Basic Block

a) b)

a = COMPUTE_a()
b = COMPUTE_b()
FC a_r ,a
FC b_r ,b
fo r i=0 to n do :
 LOAD x[i]
 LOAD y[i]
 FC x_r,x[i]
 FC y_r,y[i]
 resu l t_ rns = a_r*x_r + b_r*y_r
 RC resu l t_ rns , resu l t
 STORE resu l t

Basic Block

c)

Move FC out of the loop only if:
register is not being written in the loop
register is being written only in the same MRES as the FC

without scheduling with scheduling

17

ADDITION PAIRING

+

+

BA C

+

D

+

E

+

F

+

G

+

H

+

+

BA

+

+

DC

+

+

FE

+

HG

in general case ternary tree of additions should be built
for a single set of RNS resources linearizing is enough

fast RNS hardware allowed us to implement 3-operand addition

18

EXPERIMENTAL SETUP

19

hardware components were designed in RTL Verilog
synthesized using Cadence RC Compiler and OSU 0.18um lib
SimpleScalar ARM was extended to support RNS instructions
RNS values are stored in floating point registers
GCC was extended to implement the ISA extension
and the compilation techniques
a collection of DSP and image processing kernels were run:

without extension
with extension - hand-optimized code
with extension - basic technique (instruction selection only)
with extension - extended technique (selection & scheduling)
performance (no. cycles) and power numbers were collected

RESULTS (PERFORMANCE)
Benchmark Evaluation

0

10

20

30

40

50

60

M
at

m
ul

 (
16

X
 1

6)

F
IR

 (
16

-
ta

p)

G
au

ss
ia

n
S

m
oo

th
in

g

2D
 -

 D
C

T

LL
-H

yd
ro LL
-

In
te

gr
at

e
P

re
di

ct
or

A
ve

ra
ge

%
 Im

pr
ov

em
en

t

Performance
Power Effectiveness of Compilation

Technique

0

10

20

30

40

50

60

M
at

m
ul

 (
16

X
 1

6)

F
IR

 (
16

-
ta

p)

G
au

ss
ia

n
S

m
oo

th
in

g

2D
 -

 D
C

T

LL
-H

yd
ro LL
-

In
te

gr
at

e
P

re
di

ct
or

A
ve

ra
ge

%
 Im

pr
ov

em
en

t

Hand Optimized
Basic Algorithm
Improved Algorithm

instruction selection: +12% performance on average
selection & scheduling: +20% performance on average
manual optimizations: +30% performance on average

20

RESULTS (HAND-OPT)
Benchmark Evaluation

0

10

20

30

40

50

60

M
at

m
ul

 (
16

X
 1

6)

F
IR

 (
16

-
ta

p)

G
au

ss
ia

n
S

m
oo

th
in

g

2D
 -

 D
C

T

LL
-H

yd
ro LL
-

In
te

gr
at

e
P

re
di

ct
or

A
ve

ra
ge

%
 Im

pr
ov

em
en

t

Performance
Power Effectiveness of Compilation

Technique

0

10

20

30

40

50

60

M
at

m
ul

 (
16

X
 1

6)

F
IR

 (
16

-
ta

p)

G
au

ss
ia

n
S

m
oo

th
in

g

2D
 -

 D
C

T

LL
-H

yd
ro LL
-

In
te

gr
at

e
P

re
di

ct
or

A
ve

ra
ge

%
 Im

pr
ov

em
en

t

Hand Optimized
Basic Algorithm
Improved Algorithm

hand-optimized code:
 +30% average performance

-57% power on average
21

DCT - Power vs Performance

4A,4M

2A,4M

2A,2M

2A,1M

1A,1M; 1A,2M

1A,1M,1RA,1RM

1 5 0 0 0

1 7 0 0 0

1 9 0 0 0

2 1 0 0 0

2 3 0 0 0

2 5 0 0 0

2 7 0 0 0

2 9 0 0 0

3 1 0 0 0

3 3 0 0 0

2 0 4 0 6 0 8 0 1 0 0
Power [mW]

E
xe

cu
tio

n
C

yc
le

s

A RM w/o RNS

A RM with RNS

trend line

DESIGN SPACE EXPLORATION

22

CONCLUSIONS

23

promoting RNS idiosyncrasies to the ISA level
is an efficient way to use RNS in the programmable CPU
! effectively creates custom RNS pipeline using software
Compiler was able to extract as much as

21% improvement in performance (30% hand-opt), and
52% improvement in power dissipation (57% hand-opt)

if you plan to add second resource set to your embedded CPU
consider RNS over regular Integer set.

if you plan to use only single resource set...
think again ! add RNS. saves power and boosts performance

interestingly, unlike in application-specific hardware
in a CPU its forward conversions that define the bottleneck

FUTURE WORK

24

more aggressive ISA optimizations:
integrating loads/stores and conversions
support for arithmetic shifts
sign detection for magnitude comparison
moving conversions into memory interface?

compilation techniques for super- and hyper-block level
code annotation for direct interaction
between programmer and compiler

EXPLOITING RESIDUE NUMBER SYSTEM
FOR POWER-EFFICIENT

DIGITAL SIGNAL PROCESSING
IN EMBEDDED PROCESSORS

Rooju Chokshi1, Krzysztof S. Berezowski2,3, Aviral Shrivastava2, Stanis!aw J. Piestrak4

1Microsoft Corporation, Redmond, WA, USA
2CSE Dept, Arizona State University, Tempe, AZ, USA

3TIMA Laboratory, 38031 Grenoble, France
4LICM, University of Metz, 57070 Metz, France

CCMMLL

RESIDUE NUMBER
SYSTEM ENHANCEMENTS

FOR PROGRAMMABLE
PROCESSORS

Arizona State University

Rooju Chokshi

7th November, 2008
Compiler-Microarchitecture Lab

Computer Science and Engineering

1

Thank you for your attention!

