
Branch Penalty Reduction on IBM Cell SPUs
via Software Branch Hinting

Jing Lu, Yooseong Kim, Aviral Shrivastava, and Chuan Huang
Compiler Microarchitecture Lab

Arizona State University, Tempe, AZ 85281
{Jing_Lu, Yooseong.Kim, Aviral.Shrivastava, Chuan.Huang}@asu.edu

ABSTRACT
As power-efficiency becomes paramount concern in processor
design, architectures are coming up that completely do away
with hardware branch prediction, and rely solely on software
branch hinting. A popular example is the Synergistic Pro-
cessing Unit (SPU) in the IBM Cell processor. To be able to
minimize the branch penalty using branch hint instructions,
in addition to estimating the branch probabilities (which has
been looked at before [6, 25, 24]), it is important to care-
fully insert branch hints. Towards this, in this paper, we i)
construct a branch penalty model for compiler, ii) formulate
the problem of minimizing branch penalty using branch hint-
ing and iii) propose a heuristic to solve this problem. The
heuristic is based on three basic techniques that we introduce
in this paper: NOP padding, hint pipelining, and nested loop
restructuring. Experimental results on several benchmarks
show that our solution can reduce the branch penalty as much
as 35.4% over the previous approach.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code gen-
eration, Compilers, Optimization

General Terms
Performance

Keywords
Branch hint, Cell processor, Compiler optimization

1. INTRODUCTION
One of the critical limitations of pipelined modern com-

puter architecture is the branch penalty, which grows larger
as the pipeline depths increase. To minimize the impact
of branch penalties, target of the branch is predicted, and
instructions from there are speculatively fetched. This pre-
diction is typically history based, and implemented in hard-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0715-4/11/10 ...$10.00.

Benchmark Branch penalty
cnt 58.5%
insert sort 31.4%
janne complex 62.7%
ns 50.9%
select 36.2%

Table 1: Branch penalty can be crippling in the Cell
SPU in absence of any branch hints.

ware. Because performance of a pipelined processor is criti-
cally dependent on the accuracy of branch predictions, many
processors use large Branch Target Buffers (BTBs) to store
the results of previous branches, and use complex, and often
proprietary algorithms to predict the branch target [23, 15].

While branch prediction became the de-facto standard in
processor architectures, with the turn of the century, multi-
cores and power-efficiency (MIPS/mW) became an increas-
ingly important consideration in processor design. With the
total power budget capped, more cores can only be added by
reducing the power and the complexity of each core [9, 11].
Consequently, architects started looking at processor com-
ponents that could be removed to simplify the cores, yet
not lose too much on performance [3]. In the power-efficient
IBM Cell Synergistic Processing Units (SPUs) [17], jointly
developed by Sony, Toshiba, and IBM, architects decided to
remove hardware branch predictor and used software branch
hinting in the hope to recover lost performance [22]. This is
a significant departure from earlier architectures that sup-
ported software branch hinting, e.g., the Sun Niagara [20]
and Intel Itanium [14], in the sense that the Cell SPUs do
not have any hardware branch predictor, and they rely solely
on software branch hints. Table 1 shows the branch penalty
(percentage of execution time spent in branch penalty) on
some of our benchmark applications. It shows that branch
penalty in the absence of any branch hints can be very signif-
icant, and inserting branch hints to minimize branch penalty
is important for the success of such architectures.

In software branch hinted processors, the application may
contain branch hint instructions which indicate that the
branch instructions at specified PC addresses will jump to
specified target addresses. After executing a hint instruc-
tion, the hardware will start to speculatively execute tar-
get instructions when the specified branch instruction is ex-
ecuted. For software branch hinting to work best, there
are two fundamental considerations: first is to estimate the
taken probabilities of branches, and the second is to find the
locations in the code for branch hint instructions to mini-

355

mize branch penalty. The first problem is important because
branch hint instructions should be inserted for only heavily
taken branches. This problem has been extensively stud-
ied [6, 25, 24], but, the second problem, to insert branch
hint instructions to minimize branch penalty, is rather un-
explored.

Even if we know the taken probabilities of all the branches,
minimizing branch penalty by means of branch hint instruc-
tions is not trivial. The reasons derive from two constraints
of the given architecture. Firstly, for a branch hint to be
effective, there must be some separation between a branch
and its hint. The hint instruction must be executed several
instructions earlier than the branch. Secondly, only a lim-
ited number (one for the Cell SPU) of branch hints can be
active at any given time. For example, if two branches are
too closely located in the control flow, the second branch
cannot have enough separation. To hint the second branch,
its hint needs to be placed above the first branch, and this
will overwrite the hint for the first branch. Thus, hints may
conflict with each other, and reduce the achievable benefits.

Towards the problem of minimizing branch penalty in pro-
cessors with software branch hinting, this paper makes sev-
eral contributions:

• We construct a branch penalty model for the compiler,
in which we express branch penalty as a function of
number of instructions between hint and branch in-
struction, branch probability, and the number of times
a branch is executed.

• We present three fundamental approaches to hint branch
instructions. i) NOP padding scheme finds out the
number of NOP instructions needed between a branch
and its hint to maximize profit. ii) Our hint pipelining
technique enables hinting branches that are very close
to each other, and iii) Our nested loop restructuring
technique allows us to change the loop structure to
increase the effectiveness of branch hinting.

• Finally, we propose a heuristic that applies the above
three methods to the code prudently to minimize over-
all branch penalty.

Our point of comparison is the branch hint insertion pro-
cedure in GCC compiler. It was designed and implemented
by Sony and IBM, and included in IBM Cell SDK [13, 1].
We compare the execution time of the benchmarks with our
solution to the GCC generated binary. We use static analy-
sis [25] to get the branch probability information of a input
program. As shown by experimental results on benchmarks
from WCET suite [10] and multimedia loops [19], the pro-
posed heuristic can reduce the branch penalty by 35.4% at
maximum and 19.2% on average, at code size increase of
merely 3.4%, as compared to GCC.

2. RELATED WORK
Although software branch hinting has been present in pro-

cessors for a long time, it has not been an active area of
research. This is because it has always been in addition
to the hardware branch prediction, and in this situation,
branch hinting can only improve upon the performance of
hardware branch prediction, and the scope of improvement
was minimal. However, the Cell processor changes all that.
It does not have any hardware branch prediction, and relies

solely on software branch hinting to avoid branch penalty.
Without any branch hints, severe performance degradation
is observed. In such architectures, software branch hinting
is no longer optional, but has become mandatory!

In processors with only software branch hinting, branch
penalty can be reduced by predication [18] (if supported),
i.e., executing both possible execution paths. Loop un-
rolling [12] can also reduce branch penalty by reducing the
number of times branches are executed. Our focus is or-
thogonal; we intend to reduce branch penalty by hinting the
likely-taken branches, by prudent placement of branch hints.

Recently, Briejer et al. [7] studied the energy efficient
branch prediction on Cell SPUs by modifying hardware. In
their work, the performance and power trade-off of different
hardware setups is studied where hardware branch predictor
is present in conjunction with software branch hinting. Our
techniques, on the other hand are completely in software,
and do not require any hardware changes.

There are two main problems in branch hinting to min-
imize branch penalty: First is to accurately estimate the
taken probability of branches, and second is to find prudent
placement of branch hints to minimize the penalty. Re-
searchers has been done on estimating taken probabilities
of branches. A set of program-based heuristics, especially
focused on non-loop branches, was proposed in [6]. Another
approach [25] estimates not only branch probabilities but
also the execution frequencies of blocks and edges, including
function calls, in Control Flow Graphs (CFGs). These tech-
niques are already embedded in GCC compiler. The focus
of this paper is the second problem.

GCC compiler, included in IBM Cell BE SDK [13, 1], has
a heuristic to insert branch hint instructions to the code. We
consider this as the closest related work. It works with a set
of principles such as moving hint instructions outside the
loops to reduce the overhead of executing hints repeatedly
[8], and giving priority to hinting innermost loop branches.
GCC suffers from several problems in effectively hinting
branches, e.g., if two branches are close to each other, then
only one of them is hinted, and in nested loops, typically
only the innermost loop branch is hinted.

Our proposed technique alleviates some of the problems of
GCC. It carefully analyzes conflicting branches and is able to
hint them better through accurate cost functions, and is able
to increase the opportunity of hinting low priority branches
while keeping all the high priority branches hinted.

3. BRANCH PENALTY MODEL
To implement our technique in a compiler, we need to

model the penalty of a branch as a function of i) separation
in terms of the number of instructions, ii) the branch prob-
ability, and iii) the number of times the branch is executed,
which are all the information a compiler can have.

To do this, we conduct several experiments in which we
run a synthetic benchmark composed of a branch, and branch
hint, separated by a varying number of lnop instructions. In
each case, we insert some more lnop instructions above the
hint to keep the total number of lnop instructions as 18.
We plot the execution time (in cycles) of the benchmark
as we change the “separation” between the branch and the
hint. The execution time is measured using spu decrementer
[12]. Since the granularity of timing measured by spu decre-
menter is hundreds of cycles, we put the branch and hint in

356

Figure 1: Branch penalty is plotted as we increase the sep-
aration when hint is correct. We need at least 8 instructions
for a hint to become effective, and the penalty decreases as
separation increases.

a loop and execute the loop hundreds times to enlarge the
granularity of time measurement.

The reason we insert lnop is so that the execution time is
not affected by the dual-issue nature of the SPU. SPU is a
dual-issue core, and has two unbalanced execution pipelines,
named even and odd, and each of them can execute a disjoint
set of instructions. Even pipeline can only execute floating
point or fixed point arithmetic operations while odd pipeline
can only execute memory, logic, flow-control instructions,
including branch and branch hint instruction. Instructions
are dual-issued only when i) two instructions are issuable
and aligned at an even word address, ii) the first instruc-
tion can be executed on even pipeline, and iii) the second
instructions can be executed on odd pipeline. There are two
NOP instructions, nop and lnop, in SPUs. nop is executed
in even pipeline, and lnop in odd pipeline. By having only
control flow instructions (branch and branch hint) and lnop,
we effectively make the SPU single-issue.

Figure 1 shows branch penalty plot when the hint is cor-
rect (i.e., the branch is taken). When separation is less than
eight instructions, the hint is not recognized and we have
branch penalty of 18 cycles. After that, the branch waits
for the target instructions to be loaded. The penalty de-
creases with the increase of separation, because executing
NOP instructions is now hiding the latency of fetching target
instructions. When the separation becomes equal or greater
than 19 instructions, the branch penalty can be fully elimi-
nated. The following is our empirical branch penalty model
when hint is correct.

Penaltycorrect(l) ≈
⎧⎨
⎩

18, if l < 8
18− l, if 8 ≤ l < 19
0, if l ≥ 19

(1)

where l denotes the separation in the number of instructions.
Figure 2 shows the same experiment result except that

hint was incorrect (i.e., misprediction penalty when the branch
is not taken). As expected, when the separation is less
than 8, there is no penalty because the architecture assumes
branches to be not taken by default. When the separation
is greater than 18 instructions, we have 18 cycles of branch
penalty due to misprediction. Interestingly, when the sep-
aration is between 8 to 18 instructions, the misprediction
penalty is greater than 18 cycles and decreases as the sepa-
ration increases. This means that the branch still waits for
target instructions to be fetched, even though the branch is
not taken. Thus, branch resolution occurs after target in-
struction arrives, and this makes incorrect hints more detri-

Figure 2: Misprediction penalty is plotted as we increase
the separation. On top of branch penalty, the time to flush
pipeline is added resulting larger branch penalty than when
hint is correct.

mental to performance. Our empirical branch penalty model
when hint is incorrect is as follows.

Penaltyincorrect(l) ≈
⎧⎨
⎩

0, if l < 8
36− l, if 8 ≤ l < 19
18, if l ≥ 19

(2)

where l denotes the separation in the number of instructions.
Overall, the penalty of a hinted branch is the sum of Equa-

tion 1 and 2. Considering branch probability and the num-
ber of times the branch is executed, the branch penalty can
be calculated as follows.

Penalty(l, n, p) =Penaltycorrect(l)× np + (3)

Penaltyincorrect(l)× n(1− p)

where n and p are the number of times the branch is exe-
cuted, and the branch probability.

4. BRANCH HINTING MECHANISM
The experiments in the previous section give us some in-

tuition about the hardware mechanism of software branch
hinting. Figure 3 depicts the mechanism drawn by our in-
ference. The description in this section can perfectly explain
the behavior of branch hint instructions.

Just like hardware branch predictors, software branch hint-
ing mechanism also requires a Branch Target Buffer (BTB).
When a hint instruction is executed, the BTB entry is first
updated, and then target instructions are loaded to the Hint
Target Buffer from the specified target address. The hard-
ware usually fetches instructions from Inline Prefetch Buffer
which is constantly loaded with the sequential instructions
according to PC address. When a branch instruction is
fetched, the PC address is compared with the branch ad-
dress in the BTB entry. If it matches, the instructions are
fetched from Hint Target Buffer instead of Inline Prefetch
Buffer.

While the actual design may vary, there are three main
parameters of any software branch hint implementation.

• d : the number of pipeline stages where the branch
hint is executed and BTB entry is set

• f : the number of cycles to fetch target instructions

• s : the size of BTB

The first parameter is d, which is the number of pipeline
stages, where the branch hint is executed and BTB entry is
set. This implies that, if the separation between the branch
hint and branch instruction is less than d cycles, then the

357

Figure 3: Software branch hinting is characterized by hint
instructions setting the BTB entries. It has 3 key parame-
ters, i) d, the number of pipeline stages where BTB is set,
ii) f , the time to fetch target instructions, and iii) s, the
number of entries in BTB.

fetch stage will not even recognize that there is a hint to this
branch, and the default prediction (typically, “not taken”)
will happen. d of SPUs is 8.

The second parameter is f , which is the time (in cycles) to
fetch target instructions. After a BTB entry is set, a request
is made to the arbiter [12] to fetch the target instructions
from memory into the Hint Target Buffer. Note that f may
not be statically known, since the delay to get target in-
structions from the memory depends on the availability of
the memory bus. Therefore, in order to completely avoid
branch penalty, the separation between a branch hint and
branch should be at least d+f . This is termed as separation
constraint, and it is 18 in SPUs. If the branch and branch
hint are separated by more than separation constraint, then
there is no penalty for a correctly hinted branch. However,
if the separation between the branch and branch hint is less
than d+f , but greater than d, say d′, then a correctly hinted
branch will incur a branch penalty of d+ f − d′.

During the hint stall, the branch instruction is stalled be-
fore going into execution pipeline. Therefore, even if the hint
is incorrect, the comparison between hinted target address
and the actually calculated target address, namely branch
resolution, can only take place after actually executing the
branch instruction. Thus, on top of the branch penalty of
18 cycles, the time to wait for the target instructions to be
loaded is added to misprediction penalty. This should be
the same as d+ f − d′ from the above.

The third parameter is s, which is the number of entries
in the BTB. A n-entry BTB would imply that n branches
can be hinted at the same time. Note that along with the
size of BTB, s also impacts the size of Hint Target Buffer,
which must be large enough to hold target instructions for
all the BTB entries. We expect s to be a small number, to
keep the software branch hinting mechanism power-efficient.
SPUs have one-entry BTB, making s = 1.

5. PROBLEM FORMULATION
The problem of minimizing branch penalty using software

branch hinting is to find i) a set of branches to be hinted,
and ii) a set of program locations where the hints for those

branches should be placed, that will minimize overall branch
penalty of the program.

First of all, we need to know branch probabilities and
frequencies. This is because, as we discovered in Section
3, when a branch is not taken, hinting the branch will not
only increase the instruction count, but also incur a larger
branch penalty causing a significant performance degrada-
tion. The problem of finding branch probabilities has been
well-studied, and improving that state of the art is not the
intent of this paper. We use the static estimation technique
[6, 25] embedded in GCC compiler, but any branch proba-
bility estimation technique can be used.

Even if we know the probabilities, and we have identified
branches that benefit by hinting, it is rarely possible to hint
all of them. This is primarily because of the separation con-
straint, which is architecture dependent. In an architecture
with s size BTB, only s branch hints can be active at any
point of time. In SPUs, only one hint can be effective at any
point of execution, which means when two branches are lo-
cated too close to each other, only one branch can be hinted.
To overcome this problem, we will present three methods to
enable hinting more branches later in this paper. Since our
technique involves restructuring of basic blocks, the control
flow of the program may change after applying our tech-
nique. However, the program semantic will stay the same.
Now, the problem can be formulated as follows.

• Input: A program which can be represented in Con-
trol Flow Graph, and branch probabilities and frequen-
cies of the branches.

• Output: A new program with branch hint instruc-
tions. The program may have a different control flow,
but the semantic should remain the same.

• Objective: Minimize branch penalty, or maximize
program performance.

• Constraint: For every pair of a hint and branch, sep-
aration must be at least d cycles. Also, only s hints
can be effective at any point of time, so the lifetime
of more than s hints should not overlap. d and s are
architecture dependent.

6. OUR APPROACH
In this section, we present three basic techniques which

enable us to hint more branches: NOP padding, branch
pipelining, and basic block restructuring. We analyze the
conditions when the application of each method can be ben-
eficial to performance. Lastly, we will present our heuristic
that combines all of them and apply each method prudently.

6.1 NOP Padding
When the enough separation cannot be accommodated,

we can insert NOP instructions to artificially increase sepa-
ration as shown in Figure 4. In the figure, NOP padding in-
creases the separation to eight instructions making the hint
to be effective. Let us assume this branch is taken always.
Using our branch penalty model, the penalty drops from 18
to 10 cycles. With the help of dual-issue, inserted two nop-
lnop pairs can be executed in two cycles, and thus the total
performance improvement is six cycles.

GCC compiler included in IBM Cell SDK also inserts nop
instructions when a user-specified option is given [1]. We

358

Figure 4: (a) Before NOP padding, the branch cannot be
hinted. (b) NOP padding enables hinting the branch.

insert both nop and lnop to minimize the overhead of exe-
cuting additional instructions. When user explicitly speci-
fies the maximum number of nop instructions to be inserted,
GCC inserts whenever the branch cannot have enough sepa-
ration, but in reality NOP padding may not be always prof-
itable. This will be shown in our experimental results.

On the other hand, in our approach, we analyze the per-
formance gain of NOP padding using our branch penalty
model. We use NOP padding not only to enable a branch
to be hinted but also to increase the performance gain, so
called profit, of hinting the branch.

Let l, n, and p respectively denote the original separation
before padding, the branch probability and number of times
the branch is executed. The branch penalty before applying
padding can be calculated as follows.

Penaltyno pad = Penalty(l, n, p)

Since l is less than the constraint, hint does not work and
the penalty is 18np.

The branch penalty after applying padding is modeled as
follows with the separation increased by the number of NOP
instructions.

Penaltypad = Penalty(l + nNOP , n, p)

where nNOP denotes the number of inserted NOP instruc-
tions.

Because the branch is taken n times, the hint instruction
and the inserted NOP instructions are also taken n times.
A pair of nop and lnop instructions can be executed in one
cyecle with a help of dual issue. Then, the overhead of NOP
padding can be modeled as the following.

Overheadpad = n(nNOP + 1)/2

Combining all of the above, the performance improvement
by NOP padding can be modeled as follows. NOP padding
is applied only when it is profitable.

Profitpad = Penaltyno pad − Penaltypad − Overheadpad (4)

6.2 Hint Pipelining
As shown in Figure 5(a), a compiler may try to hoist the

hint for branch b2 above branch b1 to increase separation.
This will lose any opportunity to hint branch b2, and this
is another common performance limiting factor in GCC. In
this case, GCC will simply give up hinting b1 since b2 has
more priority (Otherwise, GCC would not have tried to hoist
the hint in the first place.)

Figure 5: (a) Before hint pipelining, branch b1 cannot be
hinted due to the hoisted hint for b2 (b) After hint pipelining,
Both b1 and b2 are hinted.

To overcome this problem, let us consider the fact that a
hint instruction is not recognized when the separation is less
than eight instructions. This gives us an intuition that we
can insert multiple hints for multiple branches in a pipelined
fashion. Figure 5(b) shows how hint pipelining works. If
we place the hint for branch b2 less than eight instructions
ahead of branch b1, the hint will have not yet recognized
when branch b1 is executed. As a result, we can hint both
b1 and b2 since the later execution of the hint for b2 will not
affect the previous executed hint for b1.

We will use the above example to show how to analyze
the profit of hint pipelining. In this case, the profit can be
modeled as the decrease of branch penalty of newly hinted
branch b1 minus the possible increase of branch penalty of
b2. Let lx denote the number of instructions in basic block
Lx. The path from L1 to L2 is taken only when the branch
b1 is not taken. Thus, when the branch b1 is taken, the
branch b2 is not hinted. The branch penalty before applying
hint pipelining can be modeled as sum of the penalty of two
branches as follows, and the penalty of not hinted branch is
modeled as the case when separation is zero.

Penaltyno pipeline =Penalty(0, n1, p1) +

(1− p1) · Penalty(l1 + l2, n2, p2) +

p1 · Penalty(0, n2, p2)

where px and nx denote the branch probability of branch bx
and the number of times bx is executed.

After hint pipelining, both b1 and b2 will be hinted. The
maximum possible separation for the hint for b2 is decreased
from l1 + l2 to l2, which possibly increases branch penalty
of b2, but we can hint another branch b1 instead. Since
our heuristic starts inserting hint instructions from bottom
basic blocks, when this analysis is being done, the hint for
branch b1 is not yet inserted. We always assume that b1 will
be hinted at the top of L1, even though it can be hinted
farther above, possibly reducing more branch penalty. The
penalty after applying hint pipelining is modeled as follows.

Penaltypipeline =Penalty(l1, n1, p1) +

(1− p1) · Penalty(7 + l2, n2, p2) +

p1 · Penalty(0, n2, p2)

Note that is only applied when l1 ≥ 8. The above calcula-
tion is an example when a hint is hoisted to the immediate

359

Figure 6: (a) Before nested loop restructuring, the separa-
tion for b4 is limited to l4. (b) After nested loop restructur-
ing, the outer loop branch is changed to unconditional branch
b2, and the separation is increased to l2 + l4.

predecessor. A similar analysis can be done to any other
cases.

The overhead of hint pipelining is the number of times
the hint instruction for branch b1 is executed. When the
hint is in basic block Lx, it is executed nx times. Then,
the overall overhead is the difference of execution counts as
shown below.

Overheadpipeline = n1

Hint pipelining is applied only when the overall profit of it
is greater than zero, which can be modeled as the following.

Profitpipeline =Penaltyno pipeline − (5)

Penaltypipeline −
Overheadpipeline

6.3 Nested Loop Restructuring
The branch penalty from loops is important, because even

a small penalty can be accumulated for the whole itera-
tion and affect performance significantly. In this section,
we present a method specially developed for nested loops.
This technique is motivated by our observation that usually
in nested loops, only innermost loop branch can be hinted,
and the outer loop branch cannot be hinted due to separa-
tion constraint.

As summarized in Figure 6, we can change the structure
of nested loop so that the space to insert a hint for the outer
loop branch1 is enlarged. In Figure 6(a), let us suppose the
size of basic block L4 is too small to hint the branch b4.
Figure 6(b) presents our solution in which basic block L2 is
moved after L4, and two unconditional branch b1 and b2 are
introduced. Also, the target address of branch b4 is changed
to L5, and the branch condition is flipped. This technique
is applied before any hints are inserted into the code, and
here the hint for b3 is assumed to be placed in L3.

Let us consider the same example to analyze the profit
of nested loop restructuring. Before applying restructuring,
the overall branch penalty is the sum of branch penalties of

1Throughout the paper, we assume that loop branches are
always at the bottom of the loop body.

Figure 7: (a) Hint for b3 can be hoisted into L2. Branch
b4 can be hinted if l4 is at least eight instructions. (b) After
restructuring, the hint for b3 cancels the hint for b2. (c)
Pipelining is applied and both branches can be hinted.

b3 and b4. In this example, l4 is smaller than eight instruc-
tions, so the branch b4 will not be hinted.

Penaltyno restructure = Penalty(l3, n3, p3) +Penalty(l4, n4, p4)

After applying restructuring, the outer loop branch is
changed to unconditional branch b2 and it has separation
of l2 + l4. We may get more profit from this, but this intro-
duce branch b1 which will be taken only once when entering
the loop. Also, the branch condition of b4 is changed, so it
is taken only once when exiting the loop. We assume that
b1 and b4 are not hinted incurring 18 cycles of penalty for
each. The penalty becomes the sum of branch penalties of
b1, b2, b3, and b4. Note that the path probability for L4 to
L2 is one since the branch will always fall through except
when the loop terminates.

Penaltyrestructure =18 + Penalty(l2 + l4, n2, p2) +

Penalty(l3, n3, p3) + 18

The overhead of this technique is the difference of the
numbers of times hint instructions are executed. In this
particular example, the hint for b4 could not be inserted at
first due to separation constraint, but now it is inserted into
L4. However, in general, the nested loop restructuring can
be used to improve the profit of b4 even if l4 is greater than
eight instructions. In this case, the overhead is considered
as zero because the hint instructions are not moved to other
basic blocks.

Overheadrestructure =

{
n4, if l4 < 8
0, otherwise

Nested loop restructuring is only applied when the overall
profit of it is greater than zero, which can be modeled as the
following.

Profitrestructure =Penaltyno restructure − (6)

Penaltyrestructure −
Overheadrestructure

Note that in the above example, without loss of generality
L3 can denote a loop body containing multiple basic blocks.
This is because the intention of nested loop restructuring
is to give more separation to outer loop branch, and the
inner loop is not affected. For the loop body which does

360

not have any likely-taken branches (e.g. function call or
if-then-else), we hoist the hint for the loop branch to the
loop-initialization block, which is executed only once. This
is to reduce the overhead of repetitive execution of the hint
instruction. Figure 7(a) shows an example where the hint
for inner loop can be hoisted to outer loop body. After
applying restructuring, the hint for b3 is hoisted to L2 and
overwrites previously inserted hint for b2, as shown in Figure
7(b). Instead of canceling the hint for b2, we can apply
pipelining to hint both branches. Figure 7(c) shows the final
solution. We check the structure of the inner loop body, and
if the hint can be hoisted, we assume that pipelining will
be applied later. To determine its profitability, a similar
analysis to the above can be done assuming the hint for b3
will be placed seven instructions above b2.

This abstraction of loop body enables us to apply this
technique to all kinds of loop nests. For loop nests whose
depth is more than two, this technique is recursively ap-
plied from the innermost loop to the outermost loop. For
example, let us suppose we have three loops L1, L2, and
L3. L1 is the innermost loop, and L3 is the outermost loop.
L1 and L2 are first considered as restructuring candidates,
and we check the profit of restructuring two loops. If those
two loops are reordered, they can be considered as one loop
body. Then, either the reordered loop body or L2 can be
considered as restructuring candidate with the next outer
loop L3. Also, if there is more than one inner loops, all of
the inner loops can be considered as one loop body. This
restructuring may result in severe instruction cache misses
in conventional machines, but it is not the case in software
branch hinting because instructions are explicitly prefetched
by branch hint instructions.

6.4 Our Branch Penalty Reduction Heuristic
Given all methods and their applicable conditions we dis-

cussed above, now we present a heuristic that combines all
of them. It requires the information of all nested loops, the
branch probabilities, and the number of times each branch
is taken as input.

Algorithm 1 shows the pseudocode of our heuristic. The
procedure starts with applying nested loop restructuring to
all loop nests to increase the possible separation for loop
branches. Then, it starts inserting hint instructions from
the bottom basic block. For a branch, the procedure tries
to hoist its hint to the predecessor basic blocks, scanning
predecessor basic blocks recursively. If there is a branch
in the predecessor and it is likely-taken, it stops going into
predecessors and returns the current basic block. Then, the
procedure insertHint() inserts a hint instruction in the cur-
rent basic block. It checks the separation and applies NOP
padding and hint pipelining when applicable.

7. EXPERIMENTAL RESULTS
The effectiveness of the proposed heuristic is validated

using various benchmarks from Multimedia loops [19] and
WCET benchmarks [10]. Our baseline is GCC compiler [1],
which is included in IBM Cell SDK [13]. It has a heuristic
that inserts branch hint instructions to the code, which is
designed and implemented by the manufacturer. All bench-
marks are compiled with O3 optimization level. To measure
the performance and the branch penalty of the program, the
cycle accurate IBM SystemSim Simulator for Cell BE [2] is
used. As library functions (e.g. printf()) are not changed,

Algorithm 1 Our branch penalty reduction heuristic.

Apply nested loop restructuring for all loop nests;
b = last basic block in the program;
while basic block b is not the first basic block do

h = b;
while Basic block h is not the first basic block do

if Branch in h->predecessor is likey-taken then
break;

end if
h = h->predecessor;

end while
insertHint(b, h);
if b != h then

b = h;
else

b = b->predecessor;
end if

end while

insertHint(b, h): Insert a hint instruction for the branch
in basic block b into basic block h.
{
if h contains a branch then

if Pipelining is profitable then
Insert a hint instruction for the branch in b in a
pipelined mode;

else
if NOP padding is profitable then

Insert as many NOP instructions as it is profitable;
end if
Insert a hint instruction for the branch in b;

end if
else

if NOP padding is profitable then
Insert as many NOP instructions as it is profitable;

end if
Insert a hint instruction for the branch in b;

end if
}

all the measurements are done only on user codes. Branch
probabilities and the cyclic frequencies of branches are ob-
tained by a static analysis [6, 25], which is also implemented
in GCC.

Figure 8 shows the percentage of branch penalties in the
total program execution cycles after GCC inserts hints. We
divide the benchmarks into two groups ‘high’ and ‘low’ ac-
cording to the percentage of branch penalty in the total ex-
ecution time. The benchmarks which have more than 20%
of branch penalty are grouped as ‘high’, while the others fall
under the group ‘low’.

7.1 Branch Penalty Reduction
The effectiveness of our heuristic can be shown as the re-

duction of branch penalty after applying our heuristic. Fig-
ure 10 shows the reduction in branch penalty cycles after
applying our heuristic, compared to the GCC-inserted hints.
Overall, we can reduce average 19.2% of the branch penalty
more than GCC. Since we insert NOP instructions through
our NOP padding technique, we consider the increased NOP
cycles as part of branch penalty. SystemSim simulator can
output NOP cycles separately as well as branch penalty cy-

361

Figure 8: The percentage of branch penalty in the total
execution cycles after GCC inserts hints into the program.
Benchmarks are grouped into two groups ‘high’ and ‘low’
according to the percentage.

cles, and branch penalty in our results is the summation of
branch penalty cycles and increased NOP cycles.

The proposed heuristic works more effectively for the bench-
marks with deeply nested loops, such as janne complex,
cnt, insertsort and ns. As shown in Figure 8, GCC cannot
reduce the branch penalty effectively in those benchmarks,
and all of them fall under ‘low’ group. Figure 9 compares the
code change in a deeply nested loop in benchmark ns after
GCC and our heuristic. Loop branches are shown in solid
arrows, while others are shown in dotted arrows. GCC can
only hint the loop closing branch for the innermost loop, and
because of limited basic block sizes, all other loop branches
cannot be hinted. Our technique, on the other hand, can
hint all of the loop branches.

Even with our technique, the highest reduction of stall
due to branch penalty is around 35 percent. There are sev-
eral reasons why the branch penalty cannot be completely
eliminated. Firstly, Not all branches can be hinted because

Figure 9: (a) GCC can only hint the innermost loop
branch. (b) The proposed technique can hint all of the four
loop branches.

Figure 10: Reduction of branch penalty is 35.4% at maxi-
mum and 19.2% on average.

only one hint can be active at a time. When two branches
are located too close to each other, only one of them can be
hinted. Even though our techniques can enlarge the possi-
ble separation to enable more branches to be hinted, they
cannot be applied to every case. This is because each tech-
nique is applied only when it is profitable. Unless two or
more branch hints are allowed to be active at a time, this
problem cannot be ultimately solved.

The other reason is that hint instructions are inserted in
compile time and cannot be easily changed in run time. In
other words, branch hinting works as a static branch pre-
dictor, while most of the branches are dynamically decided
to be taken or not. Even though the penalty can be effec-
tively avoided when branch is taken, there is still mispredic-
tion penalty when the branch is not taken. Thus, unless a
branch is heavily taken, to hint the branch may not be al-
ways profitable. A typical example is “if-then-else” branches
in a loop. The worst case scenario is when the branch is
taken for the half of the time. Penalty always exists whether
or not we hint the branch, as long as the hint is static. If the
compiler assigns the more-likely-taken execution path as a
fall-through path, the penalty of ”if-then-else”branch can be
effectively avoided [12], but not completely. As it is inside
a loop, the penalty gets accumulated and eventually limits
the performance. Moreover, the accuracy of branch prob-
ability information can be another limiting factor. Branch
probabilities affect the decision of which branches should
be hinted, and we rely on static analysis to obtain branch
probabilities, which may not be very accurate. Use of pro-
file information may be helpful to improve the result. But
improving the prediction of branch probability is not within
the scope of this paper.

7.2 Effectiveness of Our NOP Padding
GCC also has a mechanism in which nops are inserted

between a branch and its hint in order to increase the sep-
aration and thus the chance of hinting. However, it has no
automatic way of determining how many NOPs to insert,
and when compiled with “-mhint-max-nop=n”, GCC [1] will
insert at most n nops to ensure the separation is at least
eight instructions. In comparison, our scheme automatically
finds out the number of NOPs to be inserted, to maximize
profit. Figure 11 compares the performance of our NOP
Padding approach with that of GCC with n = 0, 4, and 8.
n = 0 means no NOPs will be inserted. Note that among
the GCC schemes, sometimes inserting NOPs even decrease
the performance. This is because GCC does not have any
profitability analysis to find out the number of NOPs to be
inserted. Another advantage of our technique is that while
GCC only inserts nops, while we insert nop and lnop pairs.

362

Figure 11: Execution time comparison between our NOP padding technique and GCC’s ”-mhint-max-nops” option. In all
benchmarks, our technique outperforms GCC. GCC even results in performance degradation for several benchmarks.

By doing this, we benefit from the dual-issue nature of SPU.
Even when two approaches insert the same number of NOP
instructions, the performance penalty of our approach is half
as that of GCC. Consequently, the performance improve-
ment of our technique always surpasses the one of GCC.

This prudent insertion of NOP instructions is also impor-
tant in the context of static code size increase. IBM Cell
BE is a limited local memory architecture, and each SPU
can only access its local store which is of 256 KB. Code,
global data, and all dynamic data such as stack and heap
data reside in the local store. There have been dynamic
management schemes [21, 16, 4, 5] for code and data. How-
ever, since all of data and code share the same local store,
the increase in code size imposes more burden to those man-
agement schemes and thus increases the overhead of them.
Therefore, it is important not to increase the code size too
much. Note that this is static code size which affects the exe-
cutable file size, and the dynamic code size increase overhead
was already considered and included in the branch penalty
reduction results. The average code size increase is merely
3.4%, while GCC incurs 11.7% code size increase with the
“-mhint-max-nop=8” option.

7.3 Performance Improvement
The reduction in branch penalty cycles will improve pro-

gram performance, and the amount of performance improve-
ment depends on the percentage of branch penalty in the
total execution time.

Figure 12 shows the performance improvement for each
benchmark, and as expected, benchmarks in ‘high’ group

Figure 12: Performance improvement obtained with the
proposed heuristic is as much as 18%.

show more performance improvement than those in ‘low’
group, with the peak speedup of 18%. This is natural in the
sense that higher proportion of branch penalty makes them
more susceptible to performance improvement via branch
penalty reduction. However, benchmark select has the sec-
ond highest branch penalty percentage but shows the lowest
speedup in the ‘high’ group. This is because it has multiple
“if-then-else” branches in loops, whose penalty cannot be ef-
fectively avoided by software branch hinting as mentioned
in the previous section. Though the benchmarks in ‘low’
group show relatively low speedup, it does not mean that
our technique is not effective for those benchmarks. Our
technique can reduce over 25% of the branch penalty for the
benchmark GSR, but it is not fully reflected as reduction in
execution time because its percentage of stall due to branch
penalty is too low.

An important aspect of our technique is that our heuristic
never results in a performance decrease. This is because
every step of our technique involves profitability analysis.
This guarantee, combined with the fact that the code size
increase by our technique is minimal, we argue that it is
always beneficial to apply our branch hinting heuristic.

8. CONCLUSION AND FUTURE WORK
Multi-cores and power efficiency have been continuously

driving modern processor design. As a result, many complex
architectural components are being removed from hardware
and required to be implemented in software instead. IBM
Cell SPUs removed branch predictor and introduced soft-
ware branch hinting. Due to a huge branch penalty, branch
hint instructions are crucial for performance optimization.

In this paper, we propose a heuristic algorithm to reduce
branch penalty using software branch hinting. The algo-
rithm is based on our proposed branch penalty model and
three basic techniques: NOP padding, hint pipelining, and
nested loop restructuring. The branch penalty model helps
us to estimate the branch penalty, and those techniques not
only enable more branches to be hinted, but also reduce
more branch penalty. Our experimental results for WCET
[10] and multimedia benchmarks [19] show that our ap-
proach can reduce the branch penalty by 35.4% at maximum
and 19.2% on average more than GCC’s heuristic which is
designed and implemented by the manufacturer.

363

There are several tasks to be done as future work. As the
architectural features such as BTB size are ultimate factors
that limit the effectiveness of software branch hinting, the
SW/HW codesign approach to find the optimal BTB size
is needed to improve the effectiveness and applicability of
software branch hinting. A software technique to make a
dynamic branch predictor using software branch hinting will
be useful if the overhead of dynamic prediction can be kept
minimal.

9. ACKNOWLEDGEMENT
This work was partially supported by funding from Na-

tional Science Foundation grants CCF-0916652, CCF-1055094
(CAREER), Raytheon, NSF I/UCRC for Embedded Sys-
tems (IIP-0856090), Intel, Microsoft Research, SFAz and
Stardust Foundation.

10. REFERENCES
[1] GNU Toolchain 4.1.1 and GDB for the Cell BE’s

PPU/SPU.
http://www.bsc.es/plantillaH.php?cat_id=304.

[2] IBM Full-System Simulator for Cell BE. http:
//www.alphaworks.ibm.com/tech/cellsystemsim.

[3] A. Agarwal and M. Levy. The kill rule for multicore.
In Proceedings of the 44th annual Design Automation
Conference, DAC ’07, pages 750–753, New York, NY,
USA, 2007. ACM.

[4] K. Bai and A. Shrivastava. Heap Data Management
for Limited Local Memory (LLM) Multi-core
Processors. In CODES+ISSS ’10: Proceedings of the
23th international symposium on System Synthesis,
New York, NY, USA, 2010. ACM Press. ISBN.

[5] K. Bai, A. Shrivastava, and S. Kudchadker. Stack
Data Management for Limited Local Memory (LLM)
Multi-core Processors. In Proceedings of the
International Conference on Application Specific
Systems, Architectures and Processors (ASAP), 2011.

[6] T. Ball and J. R. Larus. Branch prediction for free. In
Proceedings of PLDI, pages 300–313, New York, NY,
USA, 1993. ACM.

[7] M. Briejer, C. Meenderinck, and B. Juurlink.
Extending the Cell SPE with energy efficient branch
prediction. In Proceedings of the 16th international
Euro-Par conference on Parallel processing: Part I,
EuroPar’10, pages 304–315, Berlin, Heidelberg, 2010.
Springer-Verlag.

[8] A. E. Eichenberger, K. O’Brien, K. O’Brien, P. Wu,
T. Chen, P. H. Oden, D. A. Prener, J. C. Shepherd,
B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, and
M. Gschwind. Optimizing Compiler for the CELL
Processor. In Proceedings of the 14th International
Conference on Parallel Architectures and Compilation
Techniques, PACT ’05, pages 161–172, Washington,
DC, USA, 2005. IEEE Computer Society.

[9] M. Gschwind, H. Hofstee, B. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki. Synergistic
processing in Cell’s multicore architecture. IEEE
Micro, 26(2):10–24, 2006.

[10] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper.
The Mälardalen WCET benchmarks – past, present
and future. pages 137–147, Brussels, Belgium, July
2010. OCG.

[11] H. Hofstee. Power efficient processor architecture and
the Cell processor. In High-Performance Computer
Architecture, 2005. HPCA-11. 11th International
Symposium on, pages 258–262, 2005.

[12] IBM. Cell Broadband Engine Programming Handbook
including PowerXCell 8i.
https://www-01.ibm.com/chips/techlib/techlib.

nsf/techdocs/7A77CCDF14FE70D5852575CA0074E8ED.

[13] IBM. IBM Cell SDK 3.1.
http://www.ibm.com/developerworks/power/cell.

[14] Dual-Core Intel Itanium Processor 9000 and 9100
Series. http://download.intel.com/design/
itanium/downloads/314054.pdf, 2007.

[15] D. A. Jiménez and C. Lin. Dynamic branch prediction
with perceptrons. In HPCA ’01: Proceedings of the
7th International Symposium on High-Performance
Computer Architecture, page 197, Washington, DC,
USA, 2001. IEEE Computer Society.

[16] S. c. Jung, A. Shrivastava, and K. Bai. Dynamic code
mapping for limited local memory systems. In
Application-specific Systems Architectures and
Processors (ASAP), 2010 21st IEEE International
Conference on, pages 13 –20, 2010.

[17] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,
T. R. Maeurer, and D. Shippy. Introduction to the cell
multiprocessor. IBM J. Res. Dev., 49:589–604, July
2005.

[18] J. Kalamatianos and D. R. Kaeli. Improving the
accuracy of indirect branch prediction via branch
classification. SIGARCH Comput. Archit. News,
27(1):23–26, 1999.

[19] D. Kolson, A. Nicolau, and N. Dutt. Elimination of
redundant memory traffic in high-level synthesis. IEEE
Trans. on Comp-aided Design, 15:1354–1363, 1996.

[20] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara:
A 32-way multithreaded Sparc processor. IEEE Micro,
25(2):21–29, 2005.

[21] A. Pabalkar, A. Shrivastava, A. Kannan, and J. Lee.
SDRM: Simultaneous Determination of Regions and
Function-to-Region Mapping for Scratchpad
Memories. In HIPC 2008 :International Conference on
High Performance Computing, pages 569–582, 2008.

[22] B. Sinharoy and S. W. White. Use of software hint for
branch prediction in the absence of hint bit in the
branch instruction.
http://www.freepatentsonline.com/6971000.html.

[23] A. S. Stephen, S. Felix, V. Krishnan, and Y. Sazeides.
Design Tradeoffs for the Alpha EV8 Conditional
Branch Predictor. In in 29th Annual International
Symposium on Computer Architecture, pages 295–306,
2002.

[24] T. A. Wagner, V. Maverick, S. L. Graham, and M. A.
Harrison. Accurate static estimators for program
optimization. In Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and
implementation, PLDI ’94, pages 85–96, New York,
NY, USA, 1994. ACM.

[25] Y. Wu and J. R. Larus. Static branch frequency and
program profile analysis. In Proceedings of the 27th
annual international symposium on Microarchitecture,
pages 1–11, New York, NY, USA, 1994. ACM.

364

