
Adaptive Reduced Bit-width Instruction Set
Architecture (adapt-rISA)

Sandro Neves Soares1, Ashok Halambi2, Aviral Shrivastava3, Flávio Rech Wagner4 and Nikil Dutt2

1Universidade de Caxias do Sul - Brazil, 2University of California at Irvine – United States, 3Arizona State University - United
States, 4Universidade Federal do Rio Grande do Sul – Brazil

snsoares@ucs.br, halley@ics.uci.edu, Aviral.Shrivastava@asu.edu, flavio@inf.ufrgs.br, dutt@uci.edu

Abstract — rISA (reduced bit-width Instruction Set
Architecture) is an important architectural feature to reduce
code size, which continues to be an extremely important concern
for low-end embedded systems. rISA reduces code size by
expressing parts of the application in terms of low bit-width
instructions. ARM-Thumb, ARCcompact and MIPS16/32 are
popular examples. With the intent to exploit the dynamically
changing "working instruction set" of today's complex software,
ARM 11 now comes with two rISAs, which can be interleaved in
the application binary. However, it was demonstrated that the
code compression achieved by rISA is extremely sensitive on the
selected rISA design. Therefore, it is important to design the
optimal rISA for a given embedded application. The one optimal
rISA per application approach has already been explored by
previous works. In this paper, we present a scheme to design a
multiple rISA architecture for embedded systems. Our
experiments on MiBench report an average of 19% code
compression and up to 7% power reduction of instruction
memory when compared to previous approaches using only one
optimal rISA.

I. INTRODUCTION

Code size continues to be an extremely important concern
for low-end embedded systems, where the system power and
performance is dominated by the RAM size. Although a clear
majority of embedded processors manufactured each year fall
into this category, they remain invisible to human eyes, but
aiding us in our daily lives in the form of controllers in cars,
TVs, refrigerators, and music players. While employing RISC
processors to design modern embedded systems is preferred,
since they provide increased design flexibility using a simpler,
low power core, one of their fundamental drawbacks is the
poor code density. For such systems, a higher code size can
imply the impossibility to execute the functionality, in the
worst case, and a significant impact on the system power and
cost, in the best case. The problem is becoming complex with
the current trend of increasing software content on embedded
systems by 10X per decade.

rISA (reduced bit-width Instruction Set Architecture) is an
effective and popular solution to this code size problem.
Architectures with rISA have two instruction sets, the “normal”
set, which is the original 32-bit instruction set, and the
“reduced bit-width” instruction set, which encodes the most
commonly used instructions in 16-bit narrow instructions. By
expressing parts of the application using the "reduced bit-
width" ISA, significant code size reduction can be achieved. In
addition, since the fetch-width of the processor remains the
same, the processor when operating in rISA requires less
fetches to the instruction memory, thus saving memory energy

[1]. However rISA architectures that have just one "reduced
bit-width" ISA are unable to exploit the dynamically changing
"working instruction set" of today's embedded applications.
This is true not only because of the increasing complexity of
software, but also because a "reduced bit-width" ISA can have
only a very limited number of instructions due to bit-width
constraints. Realizing this, the new ARM 11 architecture [2]
comes with two "reduced bit-width" ISAs, which can be
interspersed in the program. Furthermore, the code
compression and power reduction obtained by this dual
instruction set technique is heavily dependent on the
application computational requirements and on the narrow
instruction set design. Consequently, previous works about
rISA suggested techniques to design the best "reduced bit-
width" architecture for a given (set of) application(s). However
they only solve the problem for single "reduced bit-width" ISA
architectures. If the focus is now changed to develop dual
"reduced bit-width" ISA for architectures such as ARM 11, the
different computational requirements inside a single application
should be considered and, in response, the rISA parameters
should be adapted accordingly.

As far as we are aware, this is the first effort to
automatically design "reduced bit-width" ISAs for multiple
rISA architectures. Our approach adapt-rISA is aware of the
potential different computational requirements inside a single
embedded application, adapting the rISA parameters to them at
compilation time. At run time, static reconfiguration
capabilities are available to correctly decode these reduced
instructions, created using different rISA parameters. This way,
adapt-rISA achieves better results than rISA (as explored by
previous works, i.e., with only one optimal rISA per
application), both on code compression (19% on average) and
on power reduction (up to 7% less fetch requests). In addition,
this work also employs a new rISA design that may simplify
the translation unit implementation, a block necessary to
translate reduced to normal instructions at run time.

II. RISA ARCHITECTURAL FEATURE

The normal code and the corresponding reduced code of a
small section of the CRC32 program of the MiBench
benchmark [3] are shown in Figure 1 – MIPS 16/32
architecture. The reduced code in Figure 1b constitutes a block
of reduced instructions or a reduced block. A program,
compiled using a rISA compiler, is composed by several of
these reduced blocks and also by blocks containing only
normal instructions (the normal blocks). The change mode

mailto:snsoares@ucs.br
mailto:dutt@uci.edu
mailto:flavio@inf.ufrgs.br
mailto:Aviral.Shrivastava@asu.edu
mailto:halley@ics.uci.edu

instructions and the reduced nops (rISA_nop), present in the
figure, are explained in detail later in this text.
(a)
lw $4,12($fp) (b)
addi $2,$4,-1 Change Mode Instruction

move $4,$2 reduction lw_r $4,12($fp)| addi_r $2,$4,-1
sw $4,12($fp) move_r $4,$2 | sw_r $4,12($fp)
lw $4,8($fp) lw_r $4,8($fp) | addi_r $2,$4,1
addi $2,$4,1 move_r $4,$2 | sw_r $4,8($fp)
move $4,$2 rISA_nop | Change Mode Instr.
sw $4,8($fp)

Figure 1. Normal code (a) and Reduced code (b)

If Ό is the set of different opcodes in the application code
and N is the cardinality of this set, for each of the opcodes in
Ό, there are Xi occurrences of instructions in the code, with Xi

> 0 and 0 ≤ i ≤ N-1. Since there are, in general, fewer bits in
the reduced instructions to specify the opcode, a conversion-to-
rISA algorithm will employ a set Γ, subset of Ό. For each of
the opcodes in Γ, whose cardinality is n, being n < N, all the
corresponding xi occurrences of instructions will be marked to
be reduced, with xi ≥ 0 and 0 ≤ i ≤ n-1. Actually, not all the xi

occurrences of instructions of the opcodes used, or selected, by
the conversion-to-rISA algorithm can be reduced; some of them
must be discarded from reduction. This way, only x'i

occurrences of a given selected opcode are actually reduced,
being x'i <= xi. The role of a rISA compiler is to find the best
rISA design and also the best rISA design configuration to
maximize the number of reduced instructions in the final
executable code, i.e., to maximize the ∑

0

n−1

x ' i . We call a rISA
design the information related to the number of bits reserved to
each field of the reduced instruction, which includes the
definition of n, the cardinality of Γ, and also the use (or not) of
special reduced instructions, employed to support the
conversion process, as the instruction rISA_extend to
complete immediate values. A rISA design configuration
specifies the combination of different opcodes from Ό in the
subset Γ, whose occurrences will be initially marked for
reduction in the application code. If, for example, the rISA
design (rd) employs four bits to specify the opcode, each
corresponding rISA design configuration (rdc) will have its
own set Γ, containing 16 (n = 16) different opcodes from Ό. If
the goal is to increase code density, rdc must include the most
frequently encountered instructions in the code, but if the goal
is power reduction, the most executed instructions must be
selected.

Figure 2 shows the translation of the addi instruction,
present in the code of Figure 1, from 32 bits (Figure 2a) to 16
bits (Figure 2b), using the rISA design rISA_4444. This design
uses four bits to specify, respectively, the opcode, the source
register (rs), the target register (rt) and the immediate value
(imm). Since the values are not semantically altered, the
instruction can be reduced. The reduced opcode is arbitrary, but
it must be converted to the original opcode during the decode
phase at run time. During this phase, rISA processors
dynamically expand the reduced instructions into their
corresponding normal instructions. Only normal instructions
are actually executed. Usually, each reduced instruction has a
corresponding instruction in the normal set. This simple and

direct transformation demands only a simple translation unit in
the decode logic of the processor. No other hardware module is
necessary.

(a)
addi $2,$4,-1 (normal)
Opcode(6 bits) - rs(5) - rt(5) - imm(16)

001000 – 00010 – 00100 - 1111111111111111

(b)
addi_r $2,$4,-1 (reduced)
Opcode(4 bits) – rs(4) – rt(4) - imm(4)

0000 – 0010 - 0100 - 1111

Figure 2. addi instruction: Normal (a) and Reduced (b)

III. RELATED WORK

In the contemporary embedded processors market,
important companies, such as ARM [2] and ARC [4],
implement rISA features in their products. [5, 6] present a
design space exploration framework for rISA design aimed at
improving code density. The experiments employ various rISA
designs (one design and one configuration per application)
working with a minimum of 16 and a maximum of 128
opcodes (n = 16 to n = 128). Four to seven bits were required
to specify the opcode in these designs. The works show that the
rISA design rISA_4444 presents the best results when
balancing code compression and the complexity of the
translation process at run time. If a normal instruction, selected
by a rISA_4444 design configuration, cannot fit on a reduced
instruction, without losing information, it is simply discarded
from reduction. Some other rISA designs solve this problem
adding special reduced instructions to the application original
code: rISA_extend to complete immediate values is an
example. Other examples are the special reduced instructions
employed to perform spills (either to memory or to non-rISA
registers) and reloads of values in registers, due to the limited
availability of registers by the reduced instructions.

The focus of [1] is energy reduction using rISA. It is shown
that a conversion-to-rISA algorithm aimed at improving code
density does not achieve the best results in terms of energy
reduction, because it does not consider the dynamic aspects of
the application execution. An algorithm that is aware of this
dynamic behavior is presented and applied on a MIPS
processor model. This algorithm selects the most executed
instructions, instead of the most frequent in the application
code. An average of 26% reduction in the number of fetches to
the instruction memory is reported.

The work in [5] details various software and hardware
aspects of rISA designs. Some of them are listed here since
they are also used by adapt-rISA: (a) in order for the normal
instructions to adhere to the word boundary, there can be only
an even number of contiguous rISA instructions. To achieve
this, a rISA instruction that does not change the state of the
processor is needed: the rISA_nop instruction. The compiler
can then pad odd-sized sequences of rISA instructions with
rISA nops; (b) in order to dynamically change the execution
mode of a processor, there should be a mechanism in software
to specify the change in execution mode. For most rISA
processors, this is accomplished using explicit mode change
instructions. An instruction in the normal instruction set that
changes mode from normal to rISA mode is termed the mx

instruction, and an instruction in the rISA instruction set that
changes mode from rISA to normal is the rISA_mx
instruction. A piece of code including the mode change
instructions was shown in Figure 1; (c) the fetched code is
interpreted (decoded) as normal or rISA instruction depending
on the operational mode of the processor. When the processor
is in rISA mode, the fetched code is assumed to contain two
rISA instructions. The first one is translated into a normal
instruction, while the second one is latched and kept for the
next cycle of execution. The translation can be performed in
terms of simple and small table lookups. Since the conversion
to normal instructions is done during or before the instruction
decode stage, the rest of the processor remains the same - only
the decode logic needs to be modified.

Another class of techniques for code size reduction is code
compression with dynamic hardware-based decompression.
These techniques typically propose a hardware block that
dynamically decompresses the instruction stream as it arrives at
the processor. This decompression block resides between
memory (either the main memory or instruction cache) and the
processor. [7] first proposed a Huffman-coding based code
compression scheme for the MIPS architecture. [8,9] explored
dictionary-based compression techniques. [10] considered an
improvement to the standard dictionary-based compression
based on vector Hamming distances. They report a code size
reduction of 20% to 28% for the TI TMS320C6x processor.
[11,12] proposed a bitmask-based code compression technique
that significantly improves on the dictionary-based approach.
With application-aware bitmask and dictionary selection
methods they were able to achieve a code size reduction of
upto 42% for the TI TMS320C6x processor. These dynamic
code compression techniques are relatively independent from
the rISA technique and can be combined with rISA to achieve
greater code size reduction.

IV. ADAPTIVE RISA
The central idea supporting the adaptive rISA concept is

that a divide and conquer rISA approach can be employed to
extract better results from a single embedded application in
terms of code compression and also of power reduction.
Previous works did not consider such granularity: they search
for the optimal rISA design, and configuration, for an entire
application (only one rISA design configuration per
application). The software and hardware aspects behind the
adapt-rISA solution are the same as those used in [5] and
similar to that in ARM's Thumb ISA [2]. They are: (a) use of
rISA_nops and change mode instructions; (b) conversion from
reduced to normal instructions performed during the instruction
decode stage; and (c) the actual execution of normal
instructions only.

A. Motivation
Even an embedded application of low complexity probably

includes distinct sections of code with different computational
requirements (based on string manipulation, or on bitwise and
logical operations, or on arithmetic operations, and others). In
general, only a subset of Ό will be needed to reference all the
different opcodes in a specific section of the application. As a
consequence, the same cardinality of Γ, specified by a given

rISA design, can encompass more of the opcodes in that
region. This is important not only to increase the number of
reduced instructions in the final code, but also because lesser
number of bits may be employed to specify the opcode in the
reduced instructions. The additional bits may then be employed
to specify immediate values, for example. This assertion and
also the fact that rISA_4444 presents a solution with a good
trade-off between code compression and translation process
complexity, when compared to other designs, led us to select
such design in our experiments. The smaller number of
opcodes, in previous works, was used by the design
rISA_4444: sixteen only.

It was stated earlier that not all the initially marked
instructions, as specified by the rdc, are actually reduced (x'i

<= xi). Some of these instructions are discarded from reduction.
The main cause of discard is overflow. An instruction is
discarded by overflow if some specific bit field in its normal
form, such as the immediate value, cannot be expressed using
the reduced number of bits in the corresponding reduced form.
However, there are two other reasons for discarding. If the
number of contiguous instructions, marked to be reduced, is too
small, the potential reduced block to be formed will cause an
expansion in the code, instead of a reduction (the later addition
of change mode instructions will cause this expansion). These
contiguous instructions must then be discarded from reduction.
Branches and jumps between normal and reduced blocks are
allowed only when the source is a normal instruction and the
target is a change mode instruction at the beginning of a
reduced block. In all other cases, the instructions acting as
source and target must be discarded from reduction.

We decided to measure the discard of instructions, during
compilation, related to the three causes presented above. These
numbers were not presented by previous works. The results for
the MiBench program qsort, reduced using the design
rISA_4444, are shown in Figure 3 (in the bars on the right in
each pair). The first pair of bars show the total number of
marked instructions, the last pair shows the number of
instructions that were actually reduced, and the other pairs
show the number of instructions discarded and corresponding
causes. The values in Figure 3 show a lot of instructions
discarded by the design rISA_4444. The other MiBench
programs, used in this work, presented similar values.

Furthermore, we remember that a smaller number of
opcodes may be considered by rISA designs when handling
different sections of an application. These two reasons led us to
try a new rISA design with a set Γ of cardinality 8 (n = 8). It
was called rISA_8ops and used in the same qsort program of
the MiBench. The discard results are also shown in Figure 3 (in
the bars on the left). A significant improvement was reached:
almost three times more instructions were actually reduced.
Because of this, the new design was adopted. It has not been
considered by previous works about rISA, whose Γ set
cardinality varies from 16 to 128. In this experiment, the
rISA_8ops used the eight most executed opcodes in the
corresponding rISA_4444 design configuration, for the whole
application.

Figure 3. Discard of instrs., qsort program – r_4444 (right) x r_8ops (left)

B. Code Conversion
The input to our conversion-to-rISA algorithm is the

Assembly code generated by the gcc cross-compiler. This
Assembly code is traversed and operated by a series of
methods that, based on the rISA design and configuration
previously specified, produce the final reduced code (Figure 4).

INPUT: application's Assembly code produced by gcc
PARAMETERS:rISA design and rISA design configuration
if (mips.usingRISA ()) {
 mips.rISA.mapRegisters ();
 mips.rISA.markCandidates ();
 mips.rISA.isPossibleToReduceCandidates();
 mips.rISA.discardSmallBlocks ();
 while(mips.rISA.treatBranchesAndJumps())
 mips.rISA.discardSmallBlocks ();
 mips.rISA.countFinalBlocks ();
 mips.rISA.translateToRISAstep1 ();
 mips.rISA.translateToRISAstep2 ();
 mips.rISA.generateFinalCode (output);
}

Figure 4. conversion-to-rISA algorithm

Since reduced instructions have limited register file
accessibility, the method mapRegisters implements a simple
register mapping strategy where all the instructions of the
application are allowed to access only a fixed window of 16
contiguous registers of the register file (half of the total number
available). It was not a limitation for the programs used in the
experiments of this work, but it is a point to be improved for
future work. The method markCandidates is called to mark all
the instructions, in the application code, that constitute
occurrences of the opcodes belonging to the Γ set of the rISA
design configuration being used. The method
IsPossibleToReduceCandidates discards (removing the mark)
those marked instructions that cannot be reduced because the
number of bits needed to specify their operands is greater than
those available in the reduced instruction. Special reduced
instructions are not used.

DiscardSmallBlocks is used to make an analysis on the
blocks formed by adjacent marked instructions, taking into
account the later insertion of the change mode instructions. The
instructions inside blocks that cause an increase on the size of
the final code are discarded from reduction.
TreatBranchesAndJumps is called to discard those marked
instructions involved, as origin or target, in branches or jumps
from a reduced block to a normal block, or vice versa. The
exception is a branch or jump from a normal block to the
beginning of a reduced block. This method is called in
conjunction with the method DiscardSmallBlocks until there

are no more branches or jumps to be discarded.
CountFinalBlocks is a method for statistical data generation.

The translateToRISAstep1 method effectively creates the
reduced blocks, inserting the change mode instructions (mx and
rISA_mx) and also the reduced nops. rISA_nops are also used
to position reduced branches and jumps in the least significant
16 bits of a word in the instruction memory. As a result, there
is no need to offer a special handling to the latched reduced
instruction when a branch or a jump occurs. The method
translateToRISAstep2 recalculates the offsets of branches and
jumps, generates the final 16 bits sequences of the reduced
instructions, and encapsulates the pairs of reduced instructions
in word size boundaries. Finally, generateFinalCode is
employed to generate the final code in the format used by our
simulator.

C. Design Space Exploration
The DSE (design space exploration) process to obtain the

best rISA design configuration for an application focus on the
dynamic aspects of its code execution. It includes the following
steps:

1. The application is executed with a small dataset to get
its execution profile, and the instructions inside the
most executed sections of code are marked. The
different opcodes of these marked instructions are
identified and stored. A small dataset means a subset
of the applications' input data or a reduced number of
iterations;

2. A DSE process is triggered using combinations of
these opcodes (8 or 16 each time) to try improved
results in terms of (i) total number of reduced
instructions, (ii) average block size, and (iii) total
number of blocks. The application is not actually
executed;

3. The most promising combinations are used to form a
rISA design and configuration database. Each record
of this database is applied on the application using the
conversion-to-rISA algorithm presented in Section IV-
B. The application is then executed.

The adaptive rISA architectural feature arises when the
granularity of this DSE process is changed from an entire
application to its individual routines. The result is a set of rISA
design configurations to be applied by the conversion-to-rISA
algorithm in the reduction of the application's individual
routines. Assembly directives (risabegin and risaend)
are also provided to allow the coexistence of two or more rISA
design configurations inside a single routine. The use of these
directives is done by the designer manually at this moment.

D. Implementation Details
Some additional software and hardware aspects are needed

to support the adaptive rISA architectural feature. First, the
final reduced code must provide a way to inform the processor
not only the execution mode, as in rISA, but also which rISA
design configuration is being employed. The solution adopted
is simple and direct: the mx instruction, used to change the

Initially
Marked

Discarded by
Overflow

Discarded by
Small Size of
the Block

Discarded by
Branch and
Jump
Handling

Actually
Reduced

0

50

100

150

200

250

300

350

400

execution mode from normal to reduced, carries the rISA
design configuration identifier as an immediate value.

The translation unit must receive, as an input, the rISA
design configuration identifier provided by the mx instruction.
It may also store the translation information partitioned into
smaller and independent sub-units. These subunits are activated
by the rdc identifier in the mx instruction. We remember that
each reduced instruction has a corresponding instruction in the
normal set. Then the size of these sub-units will be proportional
to the number of opcodes employed by the rISA design - less
opcodes require smaller sub-units. Thus, even having only
simulated the translation unit, we argue that this partitioned
characteristic may make adapt-rISA improve power, when
compared to rISA, not only by reducing the number of fetch
requests, but also during the transformation of reduced to
normal instructions. More specifically, power gains may be
obtained because (i) only one part of the total data structure,
used for translation, is needed at each time; and (ii) less
hardware is required to find the correct data for translation in a
small data structure.

A framework [13] for design space exploration of
embedded processors has been used in this work. We adopted
the MIPS simulator, one of the processor models available in
the framework.

V.EXPERIMENTS AND RESULTS

The methods and tools described in the last section were
used to experiment with the bitcount, CRC32, qsort and
stringsearch programs of the MiBench benchmark. First, the
experiments were executed using these programs individually
and, afterwards, they were grouped, two by two, in six different
and also more complex embedded applications, with different
computational requirements. Our interest is to show that adapt-
rISA can improve power and energy concerns in embedded
processors, thus the main metric focused is the number of fetch
requests to the instruction memory. A reduction in this metric
directly corresponds to an energy reduction due to the reduced
number of bus transactions. The reduction in overall energy
and power is, however, not calculated. In the experiments, we
present the following metrics: (1) normalized number of
fetches – presented as a percentage of the number of fetches
required by the application without reduction; (2) percentage of
actual reduced instructions in the final code; (3) average size of
the reduced blocks – considering only the instructions in the
original code, i.e., change mode instructions and rISA_nops are
not considered; (4) total number of reduced blocks; and (5)
application's code size reduction – presented as a percentage of
the normal code size. Since the number of fetch requests is the
primary metric, the other four are defined based on the most
executed instructions. Because of this, the application's code
size reduction numbers, presented in the graphs, are only
informative. It is worth to mention that (a) the code size
reduction is higher in the presence of adapt-rISA1 and (b) these
numbers would be improved if we had chosen the most
frequent instructions. In the next paragraphs, we will refer to
these other metrics as code compression metrics.

1 - The only exception is for the stringsearch program

Figures 5a and 5b present the results for the programs
bitcount and stringsearch. The number of fetches are only
slightly smaller in the presence of adapt-rISA and the average
block size experienced a small reduction. But the number of
reduced blocks and also the number of reduced instructions
have a significant improvement: 21% and 24% on average,
respectively. This compensates the reduction on the average
size of the reduced blocks. In the case of the programs CRC32
and qsort (not shown in the figure), the adapt-rISA approach
produced the same results as the one optimal rISA design
configuration found by the DSE process. These programs, even
having a small number of reduced instructions, 39 and 89
respectively, achieve good levels of reduction related to the
number of fetch requests: 24% and 28%, respectively. As
illustration, the numbers of reduced instructions are 158 and
152 for bitcount and stringsearch, respectively. The term
adapt-rISA* in the figures identifies the use of the adapt-rISA
Assembly directives introduced in the last section.

Figure 5c to 5h present the results for the six applications
formed by the combination of the four MiBench programs, two
by two. The experiments were arranged in a way that each
program, in the whole application, executes during an
equivalent number of clock cycles. For each of the four
metrics, there are three numbers: one is for adapt-rISA and the
other two are related to the (one) optimal rdc for each
individual program: both were used in the respective combined
application. The explanation for this choice is that the optimal
rdcs for the combined applications have never shown better
results than those of one of the individual rdcs – what indicates
the limitations of the one optimal rISA per application
approach. There is one exception for this presentation of three
numbers: it is for the pair qsort+stringsearch, whose individual
rdcs are the same. In general, adapt-rISA achieves better
results, i.e., less fetches and better values in the code
compression metrics. There were, in four of the six
applications, less fetches to the instruction memory, from a
minimum of 2% to a maximum of 7% of reduction. In the other
two applications, there were the same or a by 1% increased
number of fetches. However, in such cases, all other metrics
were improved by adapt-rISA. The total number of reduced
instructions was always larger in the presence of adapt-rISA:
considering the rdcs with less fetches to the instruction
memory (one of the two individual rdcs for each combined
application), the average improvement was 19%. The number
of reduced blocks experienced a reduction, using adapt-rISA,
in one of the applications, but, in this case, there was a 30%
improvement on the average size of the reduced blocks. In all
other applications, the average size of the reduced blocks was
improved by adapt-rISA.

These results were obtained using only the new design
rISA_8ops. It presented better results than those of the design
rISA_4444 for all applications used in this work. Each
experiment was validated by comparing the result(s) produced
by the program, when running on the host platform (x86 with
Linux), with the corresponding result(s) produced by the
simulator, available in the instruction memory of the processor
model.

(1)Nbr.of Fetches (2)Percentage of Reduced Instr. (3)Avg. Block Size (4)Nbr.of Blocks (5) Code Compression

Figure 5. Application's results2

VI. CONCLUSION AND FUTURE WORK

This work introduced the adaptive rISA architectural
feature. It goes beyond rISA (as explored by previous works)
because it is aware of the different computational requirements
inside a single embedded application, what is important
nowadays with the current trend of increasing software content
on embedded systems by 10X per decade. It was showed that
adapt-rISA presents better results than rISA in almost all the
applications used in the experiments, and also for most of the
metrics employed. For the code compression main metric, the
average improvement was 19%, and, concerning the fetch
requests, there were up to 7% less fetch requests. This work
also described a new rISA design and discussed how its
simplicity may be employed to reduce power consumption on
the translation unit.

We enumerate the following future activities to address
some limitations of this first work using the new adapt-rISA
architectural feature: (1) the work focused mainly on DSE
(design space exploration) for rISA design configuration. The
path is opened for a DSE focused on different rISA designs; (2)
the definition of a more robust heuristic to find the best rISA
design and configuration, in the presence of the adapt-rISA
Assembly directives; (3) the hardware implementation of the
adapt-rISA translation unit and a precise estimation of the
power reduction; and (4) evaluation using other embedded
applications.

REFERENCES

[1] A. Shrivastava, P. Biswas, A. Halambi, N. Dutt and A. Nicolau. Energy
Efficient Code Generation using rISA. Proceedings of the Asia and
South Pacific Design Automation Conference – ASPDAC 2004.

[2] Richard Phelan. Improving ARM Code Density and Performance - New
Thumb Extensions to the ARM Architecture. June 2003. Available at:
www.arm.com

[3] M.R.Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge and
R.B. Brown, MiBench: A Free, Commercially Representative Embedded
Benchmark Suite, 4th Workshop on Workload Characterization, Dec.
2001.

[4] ARC Company, available at: www.arc.com
[5] A. Shrivastava, P. Biswas, A. Halambi, N. Dutt and A. Nicolau.

“Compilation Framework for Code Size Reduction using Reduced Bit-
width ISAs”. ACM TODAES: ACM Transactions on Design Automation
of Electronic Systems, 2006.

[6] A. Shrivastava, P. Biswas, A. Halambi, N. Dutt and A. Nicolau. An
Efficient Compiler Technique for Code Size Reduction using Reduced
Bit-width ISAs. Proceedings of the International Conference on Design
Automation and Test in Europe – DATE 2002.

[7] A. Wolfe and A. Chanin. Executing compressed programs on an
embedded RISC architecture. MICRO, 81-91, 1992.

[8] S. Liao, S. Devadas, and K. Keutzer. Code density optimization for
embedded DSP processors using data compression techniques.
Advanced Research in VLSI, 393-399, 1995.

[9] C. Lefurgy, P. Bird, I. Chen, and T. Mudge. Improving code density
using compression techniques. MICRO, 194-203, 1997.

[10] M. Ros and P. Sutton. A hamming distance based VLIW/EPIC code
compression technique. CASES, 2004.

[11] S. Seong and P. Mishra. A bitmask-based code compression technique
for embedded systems. ICCAD, 2006.

[12] S. Seong and P. Mishra, An Efficient Code Compression Technique
using Application-Aware Bitmask and Dictionary Selection Methods,
Design Automation and Test in Europe (DATE), 2007.

[13] S.N. Soares and F.R. Wagner. Design Space Exploration using T&D-
Bench. Proceedings of the 16th Symposium on Computer Architecture
and High Performance Computing, pp. 40 -- 47. (2004).

2 Smaller numbers are better in metrics 1 and 5, larger are better in 2,3 and 4

(1) (2) (3) (4) (5)

0

10

20

30

40

50

60

70

80

90

100

a. bitcount rISA
Adapt-rISA*

(1) (2) (3) (4) (5)

0

10

20

30

40

50

60

70

80

90

100

c. Bitcount + CRC32
Bitcount
rISA
CRC32 rISA
Adapt-rISA

(1) (2) (3) (4) (5)

0

10

20

30

40

50

60

70

80

90

100

d. Bitcount + Qsort
Bitcount
rISA
Qsort rISA
Adpat-rISA

(1) (2) (3) (4) (5)

0

10

20

30

40

50

60

70

80

90

100

e. Bitcount + Stringsearch
Bitcount
rISA
Stringsearch
rISA
Adapt-rISA

(1) (2) (3) (4) (5)

0

10

20

30

40

50

60

70

80

90

100

f. CRC32 + Qsort
CRC32 rISA
Qsort rISA
Adapt-rISA

(1) (2) (3) (4) (5)

0

10

20

30

40

50

60

70

80

90

100

g. CRC32 + Stringsearch
CRC32 rISA
Stringsearch
rISA
Adapt-rISA

(1) (2) (3) (4) (5)

0

10

20

30

40

50

60

70

80

90

100

h. Qsort + Stringsearch
Qsort rISA
Adapt-rISA

(1) (2) (3) (4) (5)

0

10

20

30

40

50

60

70

80

90

100

b. stringsearch rISA
Adapt-rISA*

http://www.arc.com/
http://www.arm.com/

	I. Introduction
	II. rISA Architectural Feature
	III. Related Work
	IV. Adaptive rISA
	A. Motivation
	B. Code Conversion
	C. Design Space Exploration
	D. Implementation Details

	V. Experiments and Results
	VI. Conclusion and Future Work

