
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Return Data Interleaving for Multi-Channel Embedded
CMPs Systems

Fei Hong, Aviral Shrivastava, and Jongeun Lee

Abstract—Using multi-channel memory subsystems is an efficient way
of satisfying high volume memory requests from CMPs. At the same
time, the imbalance between memory bandwidth and bus performance
opens up new possibility of optimization before they are sent to bus. This
paper presents a new memory controller design for embedded CMPs
systems when the return data from the return buffer is sent back to bus.
Our scheduling policy, called return data interleaving (RDI) interleaves
the return data of each request in a round robin manner. Further, for
each request, it sends the critical word first. To evaluate our technique,
we model an Intel XScale-based CMPs using M5 simulator for CMPs
simulation and DRAMsim for memory subsystem simulation and examine
the performance of MiBench and SPEC2000 benchmarks. Simulation
results show that for memory-bound benchmarks running on the CMPs
systems with the number of cores from 6 to 16, RDI can improve the
execution time by average 11% and up to 16.9%.

Index Terms—Chip multi-core processor, multi-channel memory, return
data interleaving (RDI).

I. INTRODUCTION

Processor and memory performance have been increasing in the past
decades, but at significantly different increasing rates [21]. Memory
latency continues to remain a significant performance bottleneck [6].
As we turn to CMPs for higher performance it places more pressure
on the memory subsystem. In order to maintain the same amount of
off-chip bandwidth per core, the total off-chip bandwidth for the pro-
cessor chip must also double every process generation [18]. This band-
width increase could be met by increasing the number of pins and/or
increasing the bandwidth per pin. However, the maximum number of
pins per package is increasing gradually at a rate of 10% per genera-
tion [1]. Furthermore, packaging costs increase significantly with pin
count [1]. Therefore, the limited width of processor—memory bus is
an important bottleneck in CMPs systems.
In a multi-channel memory subsystem, each DRAM channel is

controlled by a DRAM controller and works independently and there-
fore can alleviate the memory bandwidth bottleneck. Multi-channel
memory subsystems open new opportunities for optimization and
better use of the processor-memory bus. In particular, there is oppor-
tunity to optimize the way data is sent back to the processor after the
requests are satisfied by DRAM channels. In this paper, we propose
return data interleaving (RDI), which interleaves the return data of
each request in a round robin manner. It sends the critical words of

Manuscript received July 26, 2010; revised February 04, 2011; accepted
March 12, 2011.
F. Hong and A. Shrivastava are with the School of Computing Informatics

and Decision Systems Engineering, Arizona State University, Tempe, AZ 85281
USA (e-mail: fei.hong@asu.edu; aviral.shrivastava@asu.edu).
J. Lee is with the the School of Electrical and Computer Engineering, Ulsan

National Institute of Science and Technology, Ulsan 689-798, South Korea
(e-mail: jlee@unist.ac.kr).
This work was supported in part by the National Science Foundation (NSF)

under Grants CCF-0916652, CCF-1055094 (CAREER) and by the Basic Sci-
ence Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Technology, under
Grant 2010-0011534.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TVLSI.2011.2157368

each request to the system bus first and sends the rest words of each
request next.
To evaluate our approach, we model each core in the CMPs system

based on the Intel XScale microarchitecture [3] for each core using
the M5 simulator [2] for the CMPs processor and DRAMsim [19] for
memory subsystem. We then implement RDI technique and examine
the execution of MiBench benchmarks in the multi-dimensional de-
sign space of CMPs. Simulation results show that RDI is most effec-
tive when there is slight imbalance between the processor demands and
memory bandwidth (with bus width of 8- and 16-byte and the number
of cores between 12 and 16). For memory-bound benchmarks running
on the CMPs systemswith the number of cores from 6 to 16, RDI-based
memory controller can improve the execution time by average 11% and
up to 16.9%.

II. PRIOR WORK ON IMPROVING MEMORY BANDWIDTH

Techniques for improving memory bandwidth mainly focus on elim-
inating bank conflicts [20]. Skewing [4], prime memory systems [15],
[16], and compiler transformations [12] attempt to arrange the order
of memory commands to minimize bank conflicts. Arbitrated memory
access [14] dynamically eliminate bank conflicts by enforcing a strict
round robin ordering of bank accesses. Adaptive history-basedmemory
scheduling [5] maintains information about the state of the DRAM
along with a short history of previously scheduled operations. While
some techniques focus on avoiding bank conflicts, streammemory con-
troller [9]–[11] maximizes the bandwidth for streaming applications,
by focusing on: 1) hitting the hot row; 2) avoiding bank conflicts; and
3) avoiding switching between Reads andWrites. Parallel vector access
[8], [17] present a scheme to maximize row hits in open-page memory
systems.
Most previous efforts have focused on scheduling the memory re-

quests before they are sent to DRAMs. The interval after the requests
are satisfied but before they are sent to system bus has not been paid
much attention to. Wrap-around Fill [7] is the only scheme that we
know of, that works on return data. However, this technique only fo-
cuses on the single request. In contrast, we propose to interleave the
words of multiple requests. Our scheduling policy, called RDI, inter-
leaves the return data of each request in a round robin manner. In addi-
tion, it sends the critical words of each request to system bus first and
sends the rest words of each request next.

III. OUR APPROACH

A. Illustration of RDI

When there is a cache miss, the processor core makes a request for
a word (the critical word) to the memory. However, as a response,
memory sends a block of words containing the requested word to the
processor caches. While the rest of the words in the block may be used
in the near future by the processor (thereby exploiting spatial locality),
but they are not as urgently needed as the critical word. Instead of
sending the words in the block in normal increasing address manner,
critical word first scheme sends the critical word for a request first, fol-
lowed by the rest of the words in the block.
In multi-channel memory subsystem, when several memory requests

are pending in processor, sending the return data of requests serially (as
in conventional memory) is not how the processor needs the data. In
order to send the data to the processor in the way processor needs it,
we propose to interleave the words of multiple requests in the Return
Buffer (RB), which is used to cache data before sending them to bus.
We call this scheme Return Data Interleaving, or simply RDI. We send

1063-8210/$26.00 © 2011 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 1. Comparison between interleaving and non-interleaving. Core 0 resumes
at the same time in the two examples. The other cores resume earlier with RDI.
With RDI those cores will get the CWs earlier and can resume running earlier.

the critical words of the requests first and then send the rest of the data
to the corresponding caches.
Fig. 1 illustrates the working of RDI. Suppose the return data of 4

requests (to core 0, to core 1, to core 2 and to core 3) are
in the RB. Each request’s return data is divided into four words and
the dark blocks represent the critical words. Assume it takes 2 bus cy-
cles to send a word of return data. In a conventional memory architec-
ture (critical word first with no interleaving), the critical words of four
requests arrive at the cache after 2, 10, 18, 26 bus cycles. With RDI
technique, we will send the critical words of each request first and then
send the non-critical parts. We can see that the critical words of the
four requests arrive at corresponding cache after 2, 4, 6, 8 bus cycles.
Thus, the waiting time of processor cores can be reduced by sending
the critical words first.

B. Implementation and Hardware Cost

An implementation of RDI requires storing additional information
for each RB in the DRAM controllers to let the memory controller
know with word inside a return data should be sent at a given cycle.
Fig. 2 shows the required additional information added to the memory
controller. From experiments we found that in a 4-channel memory
subsystem, the maximum total number of return data of each RB from
4 channels can be up to around 100, which means in average each RB
could have up to 25 return data queuing up in the return buffer. Here we
use 5 bits for each RB (to) indicating the number of return data
available in each RB for interleaving. stores the return
data index indicating which return data the memory controller should
send in each RB, after all the words in a return data from is send
to bus, the index value in will increase by 1, indicating
the index of next return data will be send. The size of these four buffers
is same as the size of , each of which is 5 bits. The value in
buffer indicates which word in a return buffer should be sent currently.
For a bus width of 8-byte, a 64-byte cache line will be divided into 8
words and will need 3 bits to indicate 8 different words. The four
RB share the same value in the buffer since the words inside a
return data is already reordered and the order of sending words in the

Fig. 2. Additional information needed for RDI in hardware. is responsible
for locating the word inside a return data, while is responsible
for locating the return data in each RB. stores the number of return data
available for interleaving in .

Fig. 3. (a) Architecture of CMP systems with multi-channel memory sub-
system. MCH handles all the memory requests from process and other devices.
(b) Hardware architecture modeled by simulators. M5 simulator is for building
the whole system architecture, DRAMsim is for modeling memory subsystem.

return data is the same for all return data in RB. After each RB sends a
word in a round the value in will increase by 1, indicating the next
word index the RB should send in the next round. At any given cycle,
the memory controller finds the word to send according to the value
in , , and , in a round-robin manner through

to . is responsible for locating the word inside a return
data, while is responsible for locating the return data
in each RB.
We quantify the cost of our design based on two metrics, the amount

of storage required in bits and the number of bit-comparisons. The
storage cost for a system employing -channel memory subsystem,
-byte width bus, and -byte cache line, is bits. For

a typical configuration (8-byte bus width, 64-byte cache line, 4-channel
memory subsystem), we need only 43 bits. For sending a return data,
we need 8 comparisons for locating each word and 1 comparison for
locating the return data, totally 9 comparisons. Therefore, we only need
small amount of storage and simple comparison logic additionally to
implement this architecture.

IV. EXPERIMENTAL SETUP

We evaluate the effectiveness of our technique across a range of
reasonable architectural parameters and wide variety of application
memory behaviors. To model a range of architectural parameters, we
have developed a parameterizable simulation environment to model a
typical shared-bus CMPs system [13] [illustrated in Fig. 3(a)]. Fig. 3(b)
shows the CMP system we model. We simulate the processor using the
cycle-accurate M5 [2] and the memory subsystem using the detailed
memory simulator DRAMsim [19]. We integrate DRAMsim into M5
to form a CMPs system.
The architectural parameters of each core for the baseline processor

are based on the embedded Intel XScale microprocessor [3]. We as-
sume a fixed sized die with the area equal to 8 XScale microproces-
sors and caches comprise approximately 40% of the die area. We scale
the processor architecture to different number of cores and explore
system buswidth, from 4-byte to 32-byte tomodel a range of embedded
multi-core systems [1]. We experiment with memory subsystems with

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 3

Fig. 4. Improvement on execution time using RDI technique compared to no RDI used in single and 4-channel memory subsystem. RDI is useful for benchmarks
with memory-bound configurations. Bus width is an important factor that affects the effectiveness of RDI technique. The improvement can be up to 16.9% for
memory-bound benchmarks running with 8- or 16-byte bus width.

TABLE I
BASELINE CONFIGURATIONS OF MEMORY SUBSYSTEM

up to 4 DRAM channels. Table I shows the parameters of the shared
memory subsystem configuration.
We categorize application-architecture configuration as: Processor-

bound (if the working sets are captured easily in the caches and re-
quire few external DRAM accesses) and Memory-bound (if the per-
formance is limited by cache and the rate that data can be moved be-
tween the processor and the DRAM). An important point to note here is
that the benchmarks are not bound to one class or another. They move
among these domains as the processor, cache and bus width capacities
are modulated.

V. EXPERIMENTAL RESULTS

Fig. 4 plots the improvement in execution time by using RDI for
each application and configuration. RDI is useful in the single-channel
memory systems with 4-byte bus width for the memory-bound con-
figurations (typeset with more than 6 cores, JPEG and gsm with more
than 12 cores). This is because the 4-byte bus width is too small and
causes return data queue up in the return buffer (RB). RDI works when
the return data of multiple requests exist in the RB. However, the im-
provement is limited (less than 7%) because 4-byte bus width is too
small. With larger bus width, there is not enough return data in the RB
in single channel memory subsystem and therefore RDI is not useful.
The improvements in execution time for the memory-intensive

configurations with 4-byte bus width are similar between 4-channel
and single-channel configurations. When the bus width becomes
larger (8-byte), the transmission rate increases significantly and still
the return data of multiple requests queues up in the RB and the
improvement becomes significant (up to 12.8%). When the bus width
is increased to 16-byte, the improvement in execution time for some
benchmarks decreases because high bus transmission rate reduces the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

return data in the RB; but the improvement can still be up to 16.9%
for the memory-bound benchmarks (ammp). Finally when the bus
width is increased to 32-bytes, there is very little improvement (1% for
typeset, almost 0% for the other benchmarks) because of the increased
bus transmission rate and not enough return data in the RB.
There is very little improvement (no improvement for adpcm) for

the processor-bound configurations. This is because they issue fewer
memory requests and therefore there is not enough return data queuing
up in the RB. Also note that that in some cases the execution time
increases when we use RDI. This is because RDI changes the order
of return data returning to processor and subsequent order of issuing
requests among the cores will also be different. This combined with
the fact that the latency of a memory request accessing a bank varies
depending on the state of the row buffer [5], we may have different
execution times. However, the degradations in runtime are less than
0.2%.
Experimental results demonstrate that using multiple channels is

very effective in reducing execution time and RDI can further improve
the execution time, especially when the execution time is limited by
the processor-memory bandwidth bottleneck. RDI is useful when there
are frequent memory references (typically with more than 10 memory
references/1000 instructions). What is more, the bus width can neither
be too small (for example 4-byte, which will limit the performance),
nor too large (for example 32-byte, which will make not enough return
data queuing up in the RB). In this sense, RDI is able to exploit slight
imbalance between the processor demands and memory bandwidth.
In addition, it is relatively easier to increase the performance of both

the processor and memory subsystems but more difficult to the increase
bus width [1]. The limited width of interconnect between processor and
memory subsystem is rapidly becoming the most important roadblock
to improving the performance of the processor-memory system as a
whole. Note that besides the example embedded system configurations
in the experiment section, this limited bus width problem exists in all
set of high performance computer systems. Therefore, optimizing the
way of sending the return data back to processor is necessary when we
employ high performance memory subsystems. For most embedded
systems, the system bus width is less than 8 bytes and as shown in the
experiments RDI technique will be useful for high performance CMPs
embedded systems.

VI. CONCLUSION

This paper shows that in multi-channel memory subsystems running
memory intensive applications, when DRAM bandwidth is larger than
the bus width, there is scope for optimizing the manner in which the
data is returned from the memory to the processor. This paper pro-
poses RDI, in which we interleave the return data of those requests by
sending back the critical words of each request to the system bus first
and then send the rest words in a wrap around way. While critical word
first is a known scheme to reorder the words in individual return data,
there was no previous proposal on interleaving the words of multiple
return data. Our simulation results show that, as compared to no RDI
on 4-channel memory subsystem, RDI-based memory controller can
improve the execution time by average 11% and up to 16.9%.

REFERENCES

[1] ITRS, “International Technology Roadmap for Semiconductors: Exec-
utive Summary,” 2005.

[2] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The m5 simulator: Modeling networked systems,”
IEEE Micro, vol. 26, pp. 52–60, 2006.

[3] L. T. Clark, E. J. Hoffman, J. Miller, M. Biyani, Y. Liao, S. Strazdus,
M. Morrow, K. E. Velarde, and M. A. Yarch, “An embedded 32-b mi-
croprocessor core for low-power and high-performance applications,”
IEEE J. Solid-States Circuits, vol. 36, no. 11, pp. 1599–1608, Nov.
2001.

[4] Q. S. Gao, “The Chinese remainder theorem and the prime memory
system,” in Proc. 20th Annu. Int. Symp. Comput. Arch. (ISCA), 1993,
pp. 337–340.

[5] I. Hur and C. Lin, “Memory scheduling for modern microprocessors,”
ACM Trans. Comput. Syst., vol. 25, 2007.

[6] W.-F. Lin, “Reducing dram latencies with an integrated memory hier-
archy design,” in Proc. 7th Int. Symp. High-Perform. Comput. Arch.
(HPCA), 2001, p. 301.

[7] S. G. Lloyd, “Burst mode cache with wrap-around fill,” U.S. Patent No.
4 912 631, Mar. 27, 1990.

[8] B. K. Mathew, S. A. McKee, J. B. Carter, and A. Davis, “Algorithmic
foundations for a parallel vector access memory system,” in Proc.
12th Annu. ACM Symp. Parallel Algorithms Arch. (SPAA), 2000, pp.
156–165.

[9] S. A. McKee, “Maximizing memory bandwidth for streamed compu-
tations,” Ph.D. dissertation, Dept. Comput. Sci., Univ. Virginia, Char-
lottesville, VA, 1995.

[10] S. A. Mckee, S. A. Mckee, and S. A. Mckee, “Hardware support for
dynamic access ordering: Performance of some design options,” 1993.

[11] S. A. McKee, W. A. Wulf, J. H. Aylor, M. H. Salinas, R. H. Klenke, S.
I. Hong, and D. A. B. Weikle, “Dynamic access ordering for streamed
computations,” IEEE Trans. Comput., vol. 49, no. 11, pp. 1255–1271,
Nov. 2000.

[12] S. A. Moyer, “Access ordering and effective memory bandwidth,”
Ph.D. dissertation, Dept. Comput. Sci., Univ. Virginia, Charlottesville,
VA, 1993.

[13] C. Natarajan, B. Christenson, and F. Briggs, “A study of performance
impact of memory controller features in multi-processor server envi-
ronment,” in Proc. 3rd Workshop Memory Perform. Issues (WMPI),
2004, pp. 80–87.

[14] M. Peiron, M. Valero, E. Ayguadé, and T. Lang, “Vector multiproces-
sors with arbitrated memory access,” SIGARCH Comput. Arch. News,
vol. 23, no. 2, pp. 243–252, 1995.

[15] R. Raghavan and J. P. Hayes, “On randomly interleaved memories,”
in Proc. ACM/IEEE Conf. Supercomput. (Supercomputing), 1990, pp.
49–58.

[16] B. R. Rau, “Pseudo-randomly interleaved memory,” SIGARCH
Comput. Archit. News, vol. 19, no. 3, pp. 74–83, 1991.

[17] B. M. Sally, S. A. Mckee, J. B. Carter, and A. Davis, “Design of a
parallel vector access unit for SDRAMmemory systems,” in Proc. 6th
Annu. Symp. High Perform. Comput. Arch., 2000, pp. 39–48.

[18] L. Spracklen and S. G. Abraham, “Chip multithreading: Opportunities
and challenges,” in Proc. 11th Int. Conf. High-Perform. Comput. Arch.
(HPCA-11), 2005, pp. 248–252.

[19] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B.
Jacob, “DRAMsim: A memory system simulator,” ACM SIGARCH
Comput. Arch. News, vol. 33, no. 4, pp. 100–107, Sep. 2005.

[20] D. T. Wang, “Modern dram memory systems: Performance analysis
and scheduling algorithm,” Ph.D. dissertation, Dept. Elect. Comput.
Eng., Univ. Maryland, College Park, MD, 2005.

[21] W. A. Wulf and S. A. Mckee, “Hitting the memory wall: Implications
of the obvious,” Comput. Arch. News, vol. 23, pp. 20–24, 1995.

